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The Structure of the Photon
HARALD STUMPF and THOMAS BORNE

Institute for Theoretical Physics, University Tiibingen, Germany

Introduction

This paper is dedicated to the celebration of Georges Lochak’s 70th
birthday. Naturally we cannot give a complete appreciation of all of his
merits, his work and activities. Rather, we confine ourselves to that as-
pect of his activities which is connected with our cooperation and joint
interests. This cooperation has tradition: already de Broglie himself
was in contact with members of the University of Tiibingen, in particu-
lar, with G.Mollenstedt. Whilst the topic of the dialogue of de Broglie
and Mollenstedt was electron diffraction, our present cooperation is con-
cerned with the further development of de Broglie’s fusion theory. Such
a development is a matter of actual interest because it could lead to
a better understanding of the difficulties of quantized theories and the
interpretation of high energy processes with gauge bosons, in particular
with photons.

At present the generally accepted theory of light is quantum elec-
trodynamics, and this theory is embedded into the more comprehensive
theory of the Standard model. In spite of its success it seems necessary
to further discuss the meaning and the limits of this model as by no
means all problems are solved. One of the problems is the role which
play the gauge bosons in the physical world. Understanding the role
of the photon leads to understanding the role of all other gauge bosons
and then to the decision whether or not gauge theories are fundamental
pieces for the description of nature. In this paper we discuss the aspects
of an approach to a quantum theory of light with composite photons
which was initiated by de Broglie and further pursued by many authors.



430 H. Stumpf, T. Borne

Corresponding to the modern theoretical points of view we consider
de Broglie’s idea and formalism within the framework of a quantum field
theory, i.e., we discuss the question whether quantum electrodynamics
can be replaced by a more subtle quantum field theory of composite pho-
tons. In any case such an approach modifies the conventional role of the
photon, and recently Georges Lochak [1] and Olivier Costa de Beaure-
gard [2] discussed consequences of such a new concept for photons on the
quantum mechanical level. In addition, Georges Lochak supported the
quantum field theoretic treatment of these problems and participated in
this line of approach [3].

This paper is organized as follows: first we discuss difficulties of
conventional quantum electrodynamics, then we look for experimental
and theoretical hints which support de Broglie’s approach. Finally we
present the general framework for quantum fields, which allows to formu-
late composite particle theories, in particular for composite photons [4].
The theoretical basis of this approach is provided by a nonperturbatively
regularized nonlinear spinorfield model, and it is demonstrated how the
problem of probability interpretation can be solved for composite photon
states which can be exactly calculated within this model.

1 Critique of quantum electrodynamics

On account of its unsurpassed agreement between theory and experi-
ment quantum electrodynamics is frequently considered as the best the-
ory which has ever existed in physics, cf. for instance the results with
respect to spectroscopic observations, Lohrmann [5], Milonni[6]. How-
ever, in spite of these successes many outstanding physicists of the pi-
oneer generation as for instance Dirac, Bohr, Born, Fock, Heisenberg,
Pauli, Peierls, Schwinger, and many other leading theoretical physicists
came to the conclusion that “the failure of quantum electrodynamics at
high energies would require a revolutionary break with current theory”;
see the review by Prugovecki [7]. But by the majority of theorists this
criticism was ignored in favor of a “conventionalistically instrumentalist
approach to quantum physics (quantum engineers)”. Nevertheless in the
course of time even the high precision experiments and calculations were
doubted, see Jaynes [8]. Whilst the criticism of the pioneer physicists
offered no hint how to proceed in the further development of the theory,
more substantial advices came from the side of constructive quantum
field theory. In this domain mathematicians and physicists attempted
to construct a continuum quantum field theory as a limit of correspond-
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ing lattice theories. They discovered that a resulting ¢* field theory
will be trivial. And they formulated “These arguments apply equally to
the four-dimensional Yukawa and electrodynamic interactions. If these
interactions are all trivial, it would mean that a short distance cut off
resulting from the quark interaction is essential to a theory of protons,
photons, mesons and electrons as elementary particles” and : “Such
a short distance cut off set at the proton radius, for example, would
not violate experimental facts of physics” (Glimm and Yaffe [9]). Still
another finding is of utmost interest: “The (mathematically rigorous) re-
search revealed unsuspected mathematical anomalies in the treatments
underlying mathematically rigorous formulations of the Gupta-Bleuler
formalism that have emerged from the adaption by Strocchi and Wight-
man of the Whightman’s axioms to the case of massless quantum fields.”
(Prugovecki [7]).

To solve these difficulties Prugovecki and others proposed the incor-
poration of Heisenberg’s fundamental length into the theory, which in
its modern version is formulated as a quantum geometry. This kind of
solution is a highly formal approach, which results in the manipulation
of the interaction terms etc. in order to achieve finite values. Another
way to get rid of these undesirable infinities is the finite quantum electro-
dynamics of Scharf [10] based on methods of Stueckelberg, Bogoliubow
and Shirkov and Epstein and Glaser who modified the evaluation of the
S matrix.

So the question arises: are these highly refined mathematical methods
the true solution of the problem or is there any physical idea which
admits to focus the attention in another direction?

Indeed such an idea exists. Formulating quantum electrodynamics in
an algebraic Schrédinger representation, Stumpf, Fauser and Pfister [11]
showed that the boson field commutator of the conjugate electromag-
netic field variables is fixed by the system dynamics and the fermionic
anticommutator. This means that the quantum behavior of the electro-
magnetic field is determined by the quantum properties of the fermion
field. It is therefore consistent to assume that the electromagnetic field
has its origin in fermionic fields, or with other words: the further evo-
lution of quantum electrodynamics leads back to de Broglie’s theory of
light and requires the adaption of this theory to a modern quantum
field theoretic formulation. But before discussing this topic we look for
experiments which possibly could confirm this approach.
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2 Photons with partonic structure

The parton model was introduced by Feynman [12], Bjorken and Paschos
[13] and other authors in order to explain the results of deep inelastic
electron-proton scattering. In this model a hadron consists of a collection
of partons (pointlike objects) with partly well defined quantum numbers
but without reference to a specific dynamical law. After putting forward
quantum chromodynamics partons were identified with quarks, but until
now quantum chromodynamics has not completely replaced the parton
model, and for many applications both kinds of models do coexist.

To understand the partonic structure of photons it is advisable to
study the substructure of protons first, as it is revealed by deep inelastic
electron proton scattering. As far as this process is concerned one can
visualize it by considering the proton as the fixed target of a high energy
electron microscope, where the scattered electrons lead to a diffraction
spectrum which contains the information about the structure of the pro-
ton. In this picture the laboratory system, where the proton is at rest,
is a distinguished frame of reference. In this frame the differential cross-
section is defined by the exchange of a virtual photon between electron
and proton. It reads, see Leader and Predazzi [14]

o 1 o FE

== — Lagle, e YW (N 2.1
dE/dQ 2qu4 E B(e’e) ( ) ( )

with the following definitions:

p := (mp,0) initial proton momentum
k := (E,k) initial electron momentum
k' := (E',K’) final electron momentum

and ¢ = (k—Fk'), d) := 27 dcos©, where © is the angle of the scattered k’-
vector with respect to the initial k-vector, while L,z and W8 are to be
calculated by means of the electronic or hadronic currents respectively.
Obviously (2.1) describes the diffraction pattern of the scattered electron
which is given by the variation of the beam intensities in dependence on
the variables E’ and € or © respectively. The parton model is brought
into play if one tries to find a physical interpretation of the experimental
results. To perform this interpretation we refer to the evaluated form of
(2.1) which reads (in laboratory frame) [14]:

o 4a*(E')?
dEdQ ~ ¢

(QWFNSHP%@ + 2W2€Ncos2%@> (2.2)
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where in general the structure functions WV should depend on v =
E — E' and Q? = —¢?, as independent variables. But experiments show
that not v or @2, but rather
2
2mpyv

is the independent variable of WV and W§. This ‘scaling’ behavior
can be explained if the nucleon is assumed to be composed of point-like
spin half constituents (partons) and if the structure functions for deep
inelastic reactions can be viewed as built up from an incoherent sum of
elastic scatterings of the virtual photon on these constituents. In this
case one finds a dependence of WY and W§" upon only the variable =
as desired.

However: if one whishes to elaborate this concept in more detail, by
theoretical considerations one is forced to change the reference system
in order to give an appropriate description of such reactions. Therefore,
clearly, the first step in such a theoretical discussion must be a refor-
mulation of (2.2) in terms of covariant variables. Whithout going into
details we give the result of such a reformulation. The invariant varables
are given by ¢> = —Q? and by s = (p + k)? and

2(pq) (pk) 24
and with the transformation
d’c _ 2mmyyE  d?o (2.5)
dxdy E' dE'dQ
the covariant equivalent of (2.2) reads [14]
d?o dra’s 9 xym?
— = F 1—y-— N F 2.6
drdy ~ Q1 {xy 1+< T > 2} 20

where F; depend on z and Q2. By means of (2.6) one is free to choose any
reference frame for the description of the scattering process which seems
to be appropriate from the theoretical point of view. Astonishingly this
appropriate system turns out to be the infinite momentum frame S°.
In this frame the nucleon’s four momentum is given by [14]

p= ((P2 +m%)? 0,0, —P) (2.7)



434 H. Stumpf, T. Borne

where the speed of the reference frame as seen in the laboratory frame
is

ﬁ—Lxl (2.8)

(P2 +m3,)*
for sufficiently large P, i.e., in the limit of infinite P. In this case it is
possible to perform quantitative calculations using the parton model. It
is not our intention to describe these calculations. Rather we observe
that S*° is a natural frame of reference for photons and this brings us
to the relationship between partons and photons.

The photon is the simplest of all gauge bosons mediating electro-
magnetic interactions. As such it couples to the elementary charged
constituents of matter, like leptons and quarks, in a well defined way,
which makes it a very good probing tool for the structure of more com-
plicated objects like hadrons. This can be used to measure the parton
distributions of the nucleon in deep inelastic scattering processes as was
shown above. However, the point like nature of the photon, assumed in
the Standard model, has to be confronted with the fact that the photon
may also exhibit properties similar to those of normal hadrons. This
(strange) behavior can be observed in various high energy reactions, but
for simplicity we concentrate on the example of eTe™ interactions lead-
ing to two-photon reactions. In this case, when one of the photons with
very small virtuality (quasi-real photon) interacts with the other one
with high virtuality, the interaction can be thought of as a deep inelas-
tic scattering of one photon on the other, in which case the situation is
similar to the probing of a nucleon by a highly virtual photon. It is there-
fore natural to introduce the notion of the photon structure function in
analogy to the well known nucleon case, see Abramowicz, Charchula,
Krawczyk, Levy and Maor [15].

The following notation for the kinematical variables will be used:

p = (E,0,0,F) initial electron momentum

p' = (E',0, E'sin®', E'cos®’) final electron momentum

k = (E,,0,0,—E,) momentum of the target photon

q = (p—1p) momentum of the probing virtual photon

In p it is £ > m, and thus m, is neglected. The standard scaling vari-
ables are the same as in the nucleon case and the cross-section can be
formulated in the following way [15]:

d?o7 B dra?s
dedy Q4

{2y’ F] + (1 —y) Fy'} (2.9)
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A comparison of (2.6) with (2.9) shows: the similarity is complete. Hence
we can use the diffraction pattern of the outgoing electron as a high
energy microscope for the target photon. Therefore F,,i = 1,2, can
be treated as the structure functions of the target photon. The virtual
probing photon is assumed to be a point-like object. Although the virtual
photon may also develop a nontrivial structure, viewing it as a point-like
objekt is a very good approximation at large Q2.

How are these results to be explained and interpreted? The common
interpretation runs as follows, see Drees and Godbole [16], Erdmann
[17]: the uncertainty tells us that for a short period of time a photon
can fluctuate into a pair of charged particles. Apart from the bare pho-
ton state, the photon can fluctuate into quark-antiquark pairs without
forming a hadronic bound state (anomalous) or form a vector meson.
The photon can therefore interact directly or through its resolved states,
and in this case the partons are identified with quarks. This interpreta-
tion immediately opens the possibility to treat the photon structure by
means of QCD. Fluctations of the photon into virtual two-lepton states
are well understood, and are in fact a crucial ingredient of the quantita-
tive success of QED. Fluctuations into quark-antiquark pairs are much
more problematic, however. Whenever the life time of the virtual state
exceeds about 1072% sec, the virtual ¢ pair has sufficient time to envolve
into a complicated hadronic state that cannot be described by perturba-
tive methods only. Even if the life time is shorter hard gluon emission
and related processes complicate the picture substantially. Therefore it
is not surprising but a bit embarrassing that many reactions involving
(quasi) real photons are much less well understood, both theoretically
and experimentally [16].

3 Conclusions

Before going into details of the calculations of photon structure func-
tions, let us first ask whether the fluctuation model of the photon is
in accordance with general principles of quantum electrodynamics. For
instance we consider elastic electron-muon scattering using kinematical
variables analogously to section 2. The lowest order scattering graph
results from the amplitude

e gt .
M= —eg (k' | i | k>q—2<p’ 132" | p) (3.1)
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where jj; or M are the electron or muon currents respectively. In the
next order of perturbation theory one obtains the amplitude, see Griffiths
[18]

.4 . ghv { M
M= =i g 10 (L - et ) 613 ) (2)
where I,,, contains a contribution of the vacuum polarization, i.e. the
virtual fermion-antifermion pairs. This part can be calculated, and in

this approximation the total amplitude is given by the coherent super-
position of M and M’ i.e.

M =M+ M =
» nv 62 A2 7q2 ]
s 1 0 {1 g [ (5) — 7 (i) | o 122 1o

where m is the bare electron mass and the function f is defined in [18]
(7.180). To this order we define the renormalized charge e, by [18]

1
62 A2 2
€r 1= € (1 — 1270_[_2 In (W)) (34)

where A? is a suitable cutoff. In terms of e, the amplitude (3.4) can be
rewritten as [18]

Q]

M= e e i (N L 35)
- r .]u q2 1271_2 m202 p 1y p .

which is equivalent to (3.3) up to the fourth order in eq.

This procedure can be continued to all orders of perturbation theory
and leads to renormalized charge and dressed propagators. Obviously
renormalization of charge and dressing of the propagators is by no means
a time dependent process. Rather, in the systematic version of renor-
malization the dressing concept is elaborated in a self consistent way so
that the initial, i.e., the ingoing, and the final, i.e., the outgoing parti-
cles, are dressed ones. Hence, at any time these particles are surrounded
by their polarization cloud, i.e., they are permanently dressed. This re-
sult is a clear contradiction to the idea that the bare particles fluctuate
temporarily into fermion-antifermion pairs. Therefore we conclude that
from the foundations of quantum electrodynamics the photon should be
a dressed, i.e., a composite particle for all times. This interpretation is
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supported by a critical discussion of special calculations in the quark-
parton picture of the photon.

It was Witten [19] who showed that in this picture the structure
functions can be computed exactly, at least in the so-called ’asymptotic’
limit of infinite Q2. Including next-to-leading order, the result can be

written as
1
F) (2,Q%) =a | ——a(z) + b(x 3.6
2 ( ) a, (Qg) ( ) ( ) ( )
where a(z) and b(z) are calculable functions of z, and a; (Q?) is the
value of the QCD scale parameter.

Unfortunately this calculation leads to divergent results for x — 0,
namely

a(x) ~z 9% p(x) ~ 27t . (3.7)

The coefficient of the 1/x pole in b is negative; equation (3.6) therefore
predicts negative counting rates at small z. The divergence is worse in
the next-to-leading order contribution b than in the leading order term
a. It can be shown that this trend continues in yet higher orders, i.e., the
asymptotic prediction for F}) rapidly becomes more and more divergent
for z — 0 as more higher order corrections are included. And these are
not the only difficulties, but for a detailed discussion we refer to Drees
and Godbole [16]. What are their conclusions from this disaster? They
refuse the resolution of the process into perturbative subdiagrams and
state that the only meaningful approach seems to be that suggested by
Gliick and Reya [20]. In this approach one does not attempt to compute
the absolute size of the quark densities inside the photon. Rather one
introduces input distribution functions ¢; (x, QQ) into

F (2,Q%) =22 elq] (z,Q°) (3.8)

at some scale Q2 and tries to calculate about a wider range of Q%. But
this means nothing more than the acceptance that the photon is a com-
posite particle. In our conclusion we go one step further: it is not very
sensible nor logically consistent to consider the photon as a composite
particle and the other gauge bosons as elementary point like entities. In
a radical departure from the gauge philosophy by the arguments given
above one is justified to consider all gauge bosons as composites.
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But then calculations of the photon structure functions by means of
QCD become doubtfull, and a new approach is necessary. Some aspects
of such an approach are discussed in the following sections.

As a side remark let us mention that in the low energy region mod-
ern quantum optical experiments measure photon field correlations with
increasing accuracy, c.f., Georgiades, Polzik and Kimble [21], Lloyd [22],
Mandel and Wolf [23]. One may expect also from this side defined results
on the internal photon structure.

4 The photon equation and its solutions

In sections 1 and 2 we collected and summarized theoretical and experi-
mental evidence in favor of the introduction of the concept of composite
photons. Of course this concept must be realized within the framework
of a relativistic quantum field theory, and of course such a concept should
not be confined to the photon only. But in any case the conventional
quantum field theoretic calculation schemes do not suffice to master this
problem. Therefore, a new method of nonperturbative quantum field
theory was developed with the aim of deriving effective theories for the
dynamics of composite particles or fields, respectively. The method is
based on the Hamiltonian formalism in combination with elements of al-
gebraic representation theory of quantum fields and Heisenberg’s equa-
tion of motion. The field dynamics is formulated by functional equations
in functional spaces which are isomorphic to the original state spaces
of the quantum fields under consideration, c.f., Stumpf and Borne [4],
Borne, Lochak, Stumpf [3]. As far as the physical content of the theory
is concerned, the following assumptions are made.

By generalization of the ideas of de Broglie’s fusion theory the bosons
and fermions of the Standard model are considered as composite parti-
cles. A suitable ansatz for a quantitative formulation of this assumption
is a NJL-like spinorfield model for subfermions which is regularized by
a new nonperturbative Pauli—Villars regularization. Composite parti-
cle states are defined by means of solutions of generalized de Broglie—
Bargmann—Wigner equations, and by Weak Mapping the spinor field
theory can be transformed into a SU(2)xU(1) unbroken effective local
gauge theory describing the dynamics of composite bosons and fermions.
After symmetry breaking this yields the electro weak sector of the Stan-
dard model for the first generation.

In this paper we cannot describe this extensive and comprehensive
formalism, rather we concentrate upon the photon equation and its in-
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terpretation which can be derived within the general formalism. But
before beginning a detailed discussion it should be emphasized that in
the framework of such a theory the existence of composite photon states
is not in contradiction to ‘no go’ theorems, because these theorems do
not take into account the consequences of regularization.

We start with the hard core equations for composite photon states
which are incorporated into generating functional states. For details of
its derivation, etc., we refer to references [3] and [4]. We use a highly
symbolic notation in order to obtain clearly organized expressions. In
particular we define the super indices:

I:=(Z,r) in energy equations

I := (Z, ) in covariant equations

withr e R® 2 € M?*, and Z = (i, k, &) where i = auxiliary field index,
K = superspin-isospin index, o = Dirac spinor index.

Let @) (I 112) be the covariant, antisymmetric state amplitude of the
composite photon. Then within the general formalism for ¢(?) the fol-
lowing set of covariant equations can be derived:

K, 0P (K1, L) = 3Wi ko ks Fiean, 02 (K2, K3)
K12K1<)0(2)(113K1) = *3W12K2K3K4FK4I190(2)<K23K3) 3 (41)

with DF := ’yglagélﬂlﬁzéhm and m := mi16a1a261€1l€25i1i2'

Furthermore, we have

Kh[z = [DILZLlZzaM('rl) - mZ1Z2] 6('1:1 - ,132) ) (42)

Wit = Uz 2,2,20(x1 — 22)0(21 — 23)6(21 — 24) , (4.3)

Frir, = —iXi, 060,70 [(W“au(ﬂﬁl) + mil)C} A (21— x9,m4, ) (4.4)

a2

where the superindex & is defined below, and where A (x1 — x2,my,) is
the scalar Feynman propagator. The meaning of the index x can be
explained by decomposing it into x := (A, A) with A superspin index
(spinors and charge conjugated spinors) and A isospin index with the
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following correspondence

1 for A=1A=1
2 for A=1,A=2

T3 for A=2,A4=1 (4.5)
4 for A=2,A=2.

Then we have for the vertex (4.3) Uz, 2, 2,2, = iy Biyigiy Vr1r2rsra where
dpagogay
Bi,i,i, indicates the summation over the auxiliary field indices and V is

given by

N

an KoK3ky (=
Qpoaza3zoy

Z {U(Zlaz (vhc)a?,cméﬁl K2 [75(1 - ’YO)] ,{3,{4} (46)
h=1

as[2,3,4]

with v! := 64,q, and v? := iy} .

It is remarkable that the field theoretic formalism leads to equations (4.1)
which for g = 0 yields de Broglie’s original fusion equations for local ().
Therefore equations (4.1) can be considered as generalized de Broglie-
Bargmann-Wigner equations. Equations (4.1) admit exact solutions, see
Pfister, Rosa and Stumpf [24]. In particular their corresponding secular
equation leads to finite eigenvalues which are given by the invariant mass
of the boson k? = 2. We give only the results of such calculations. Let
903?)12 be a solution of (4.1). Then gog)lz describes a vector boson with
momentum £k, if it is given by

k
#8), (w1,w2) = T, xp[—i5 (@1 +22) | Ao, (21— @alk) (A7)

K1K2 xla2
ajan

with the relative wave function
2ig .
X“ﬁi2 (z|k) == W)\,;lx\iz /d4p exp [—zpz] X (4.8)
o
k k
|:SF (p + > mil)'YMSF (P 5 mi2)c]

(no summation over 41, 4s) and

[e3Res)

Ypu +m

—_ 4.9
p2 _ m2 + je ( )

v () =

A detailed calculation with respect to this proposition and the subse-
quent discussion of eigenvalue equations is contained in [3] and [4].
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The above given representation of the boson wave function holds for
all k, as the calculation was performed in a strictly relativistic invariant
way. The integral in (4.8) can be evaluated by standard methods and
leads, of course, to a singular behavior on the light cone. Performing the
equal-time limit one explicitly sees that ¢(?) vanishes for large relative
distances ry — rg, so (4.7), (4.8) really describe bound states. Further-
more, one can verify the antisymmetry of (4.7) in the indices I;,15.

The amplitude A, characterizes the global behavior of the bosons
and has to interpreted as the corresponding vector potential. A, is not
completely arbitrary but has to satisfy the equations

A = 2iem)'y [ da{[S(k~ 0)Sla) + Rk~ ) Ry()] 4" (4.10)

—ORM(k — q)Rp(q)Ap}

From equations (4.10) a secular equation for vector bosons can be
derived. But where are the field strengths F*” 7 As far as A" and
FH are concerned, equations (4.1) show that the ‘field strengths’ F**
are determined by the ‘vector potentials’ A*, whilst the A* themselves
are eigenvectors of the homogeneous eigenvalue equations (4.10) for the
corresponding eigenvalue. Furthermore, it can be shown that equations
(4.10) are compatible with the transversality condition k?A, = 0, and
it follows that F*¥ must have the form c(k)k*A*]. But attention must
be paid to the fact that these relations only hold for x*(0|k). In the full
exact solutions (4.7) only the vector potentials A" occur.

We now discuss the superspin-isospin quantum numbers of (4.8)
which are connected with the matrices T)¢ . . For vector boson states
these matrices must be antisymmetric, and as four-dimensional matrices
they can be represented by the antisymmetric elements of the Dirac -
algebra. From the general field theoretic formalism quantum conditions
for the corresponding quantum numbers f= fermion number, ¢ = isospin,
t3 = z-component of isospin can be derived. By explicit evaluation of

these equations the eigenvectors can be determined to give [3]

|7 [T2 7574 7° | 1°]
tfoloJo[1]1]1
[0 0]0][1]|=1]0
fllz[=2[0f0]0]0




442 H. Stumpf, T. Borne

The bosons attached to the Standard model are characterized by
Ts = Ty = —iy°y*C (4.11)

which constitutes a U(1) singlet state and by the SU(2) triplet

Ty+Ts = Tay) = v"7°C (4.12)
i (T = 1) = Ty == —iC
Ty = TgU(z) = —°7'C

where these matrices satisfy the corresponding Lie algebra relations. Ac-
cording to the table all these states are eigenstates with the fermion
number f = 0.

We now turn to the set of vector bosons with the isospin/superspin
matrices T% € {y5C, 4°7°C}, which are not contained in the set (4.11)
and (4.12) and which according to the table are states with the fermion
number f = £2. These states are unphysical states. The reason for
their dropping out is the superselection rule for fermion numbers.

Finally it is well known in the context of the Standard model that the
original input of the U(1) gauge group does not immediatley lead to the
photon field. Rather gauge fixing with symmetry breaking and subse-
quent application of the Glashow-Weinberg transformation is necessary
in order to obtain the electromagnetic field from a mixture of the bro-
ken SU(2) states and the U(1) states. This phenomenological treatment
has its counterpart in the microscopic theory of composite gauge bosons.
This theory was evaluated in [3]. It would exceed the scope of this paper
to repeat these investigations. So we consider the wave functions (4.7)
as representatives of the electro weak gauge bosons although they should
undergo some mixture in order to describe the phenomenological fields.

5 Regularization and probability interpretation

So far we have nothing said about the role of the auxiliary field (indices)
which appear in the photon equation (4.1) and in its solution (4.7). As
we stated already in Section 4, the photon equations arise by means
of a new quantum field theoretic nonperturbative calculation method,
which allows to use nonrenormalizable field models, like the NJL model
for the formulation of basic field laws. The precondition for the use of
such models is the introduction of a self consistent regularization scheme
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which is expressed by the presence of auxiliary fields and the simultane-
ous emergence of indefinite state spaces. The success of this approach
thus depends on our ability to demonstrate that this regularization does
not disturb the physical interpretation. In this context the energy equa-
tion plays a crucial role. The energy equation can be directly derived
from the set of covariant equations (4.1). We resolve the general index I
into I = (Z,x) and deduce for eigenstates (4.8) from (4.1) the following
exact energy equation

2 . 2
Kopl) 7 (@1, 2) = DY, x, [ D, x,06(@1) = max, x| ), (21,2) (5.1)
‘f'iDOZQX1 [Dl)cclxzak(@) - mX1X2:| SO(ZQI)X2 (z1,72)
—3i [Dozlxl Ux, Xa X x4 Fxaz, (21 — $2)<Pg?ix3 (z1,21)

2 2
_D0Z2X1 UX1X2X3X4FX4Z1 (1’2 - xl)‘ﬂggixd (mQa IQ):| :

Now we turn to the auxiliary fields. In the course of regularization of
the NJL model and its subsequent evaluation the auxiliary field formal-
ism was developed by use of a strictly canonical quantization. Although
the auxiliary fields are deprived of any physical interpretation they are
formally treated in the way of ordinary, physical quantum fields and this
means that in this formulation each auxiliary field can be separately
considered and prepared for ‘measurement’. The result is that the GNS
matrix elements are singular and the state space metric becomes indefi-
nite.

Obviously these difficulties can only be removed if the regulariza-
tion of the original ‘classical’ spinorfield equation can be transferred
into its quantum field theoretic formulation. Considering perturbative
Pauli—Villars regularization we remember that in the process of calculat-
ing vacuum expectation values the singular propagators are replaced by
additive regularized expressions. Can one find a nonperturbative coun-
terpart in the Algebraic Schrédinger Representation? This problem and
the related problem of probability interpretation was treated by Stumpf
[25]. We give a simplified version and refer to the original paper for
details.

In the absence of condensation phenomena we assumed the free aux-
iliary field propagator (4.4) to be a reasonable approximation of the self
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consistency calculation. If we define

F Fa1<12 3?1,5(}2 = ZF‘llCQ $1,$2) (52)

1,12 12

we obtain a regularized fermion propagator

. (D 1 4, —ip(z1—x2) 3 1
F A 7’(7 )HlK?Q (2’/T)4 /d pe (1_1—[1 ’7“]3# _ mil C) (53)
L= [ 3R

The essential point of this definition is that one achieves regularization
without destroying the relativistic transformation properties of the cor-
responding expressions, i.e., the regularization does not interfere with
the requirements of a relativistic quantum field theory. Although it was
exemplified for the special case of a free auxiliary field propagator , in
the general theory one has no other means to perform a regularization
than to apply the above definition, if a correct quantum field theoretic
interpretation of the regularized theory has to be maintained.

Therefore we define the physical, i.e., regularized normal ordered
state amplitudes (™) by the single-time expressions

G, (r1 .. 1ala Z W, (v1...1pla) (5.4)

1nm winn
iin

and of course apply this definition also to the covariant amplitudes. One

immediately realizes that ¢(™ has the same transformation properties

as the original p(™) V n.

Can one derive an associated dynamical law for (5.4), the physical
single-time amplitudes? To answer this question we consider the hard
core equation (5.1) in the two—fermion sector in order to avoid lengthy
calculations and to argue as transparent as possible. We decompose
the index Z := (A, a, A,4) into Z = (z,4) with z := (A4, , A) and sum
over 41,19 in (5.1). Afterwards we perform the limit to equal times, for
instance t; =ty = 0. Due to -, ;. DY . 8i i, \i, = 0 the last bracket in
(5.1) vanishes and the equation

kO‘pgl)ZQ (1'1, r2) = Z'Dglml zleak (rl)(pZQ)ZQ (rlv r2) (55)
+7"D22m1 D$11728k (r2)90§1)mg (r17 r2)

. 2 2
-y {Dngl Mx,x20% 7, (F1,T2) + DY v mx, x, 05 x, (F1, rz)}

11,12
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results. Evidently (5.5) is no self consistent equation for the calculation
of $). Rather (5.5) brings about a connection between regularized
physical amplitudes and auxiliary amplitudes. This holds a fortiori for
the full formalism too, as the operator of equation (5.10) is part of the
full formalism.

Hence the auziliary canonical field formulation in Algebraic Schridinger
Representation is indispensible for the calculation of the dynamical eval-
uation of the spinorfield. But how can one work with the latter repre-
sentation if it produces singular functions?

As for a closed system without external forces the inner product
structure has to be self consistently defined in accordance with the sys-
tem dynamics, the only way to proceed is the use of the dynamical
equations. Again we demonstrate this for the two—fermion sector. With

@2 (r1,ra,t) = e FRR) (r),15) (5.6)

in equation (5.5) ko?) can be replaced by 10, . From this equation
one can derive a current conservation law. For abbreviation we suppress
all indices and coordinates aside from the auxiliary field indices. With
a®(1) := a* ®1 and a*(2) := 1 ® a* and with ¢ = $(? we obtain

0(p* )+ 0; [¢T 0" (1)@] + 0 [¢T " (2)¢] (5.7)
+7’§5+ﬂ<1) Z Pirig iy — i Z @ilizmillg(l)@
11,12 01,12
+7190+ﬂ Z PiyinMiy — 1 Z ¢1112m22 95 =0,
11,02 01,12
with
@Jr@ = Z @—2122 (1‘171'2)*()52122 (r17r2) (58)

2122

We remember that (5.7) is no self consistent equation for ¢(2) but only
an identity following from the time—dependent version of (5.1). Therefore
the most general functions which identically satisfy (5.7) are derived from
linear combinations of time-dependent energy eigensolutions of (5.1),
ie.,

¢, (r1, 1, t Z%@ ERtG®) (o) (5.9)
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We substitute the corresponding functions into (5.7), then with m; =
m + 6m; the identity (5.7) reads

0,(¢% @) +0i, [¢Ta (1)@ + O [¢Tak(2)¢] + ) chew e PP x(5.10)
k,k’

2
Do e ®BR) Y wiia (K)omi, = D iy, (K)ma, B(p)p(K) | p =0,

il ,iz 7;1 7i2

and for vanishing last term we have current conservation.

Without any assumption about ¢(?) the last term vanishes in the limit
of vanishing mass differences §m,;. This situation resembles Heisenberg’s
introduction of a dipole ghost with the essential difference that the tran-
sition to a dipole ghost and a subfermion for ém; — 0 is performed only
in the regularized $(™ after all calculations were done.

Then from (5.10) it follows that ¢7¢ is a conserved positive density.
This means: the physical state amplitudes ¢(2) describe stable bound
states and are elements of a corresponding Hilbert space.

Let us summarize the result of our discussion:

we have shown that it is possible to derive a bound state wave function
for a composite photon within a rigorous field theoretic formalism. The
wave function is covariant and its regularized single-time counterpart is
element of a corresponding Hilbert space. This allows a probability in-
terpretation of the (sub)structure of the photon and the corresponding
wave functions can be used to perform calculations of cross-sections in
deep inelastic scattering processes and opens a new way for the under-
standing of these high energy phenomena.

From a quantum field theoretic point of view the boson wave func-
tions are the ingredients for the construction of many boson states which
serve as a starting point for the derivation of effective quantum field the-
ories (in algebraic Schrédinger representation) and which lead in the case
of light quanta states to the Maxwell equations as effective dynamical
laws, see [3] and [4]. But as the above formalism shows, one is now in
a position to analyse the microscopic processes underlying the effective
dynamical behavior of these particles or quanta, respectively, with the
information gained by these considerations.
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