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ABSTRACT: This paper introduces a supersymmetric dual-matter atomic model based on two intersecting 

fields that periodically vary in either the same or opposite phases, forming a shared nucleus of two 

transversal and two vertical subfields that represent the particles and antiparticles of the dual atomic 

nucleus. The bosonic or fermionic characteristics of the nuclear subfields are determined by their 

topological transformations, which are caused by the pushing forces generated by the negative or positive 

curvatures of the intersecting fields during their contraction or expansion, and by the periodical 

synchronization and desynchronization of the phases of the intersecting fields while rotating.  

With a mainly visual and conceptual approach, the model employs a set of 2x2 complex rotational 

matrices of eigenvectors related in a modular way to Sobolev interpolations and to Tomita-Takesaki 

theory, graphically illustrating Reflection positivity, the Mass gap problem, the Jacobian conjecture, or 

the arising of a purely imaginary time dimension, between other topics.   

The article first explains the fields model in a general way, then it introduces some mathematical 

formalisms, translates the general system to the standard atomic terminology, and finally compares the 

model with already known developments and theories.    
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1. INTRODUCTION  

This study introduces an atomic model characterized by a dual nucleus comprising both matter 

and antimatter. The atomic system emerges from two intersecting fields that fluctuate with the 

same or opposite phases, synchronizing and desynchronizing periodically. The interactions 

between these fields give rise to a nuclear manifold consisting of two vertical subfields – one in 

the concave side of the intersection and another in its convex side – and two half-handed 

transversal subfields – left and right. The shape, mass, charge, inner kinetic energy, and spatial 

displacements of the four subfields will be determined by the pushing forces that the negative or 

positive curvatures of the intersecting fields generate while contracting or expanding.  
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Initially, the model will be introduced in a general context, subsequently translating it into the 

framework and terminology of quantum mechanics: 

 

1.1 Antisymmetric system  

When the intersecting fields have opposite phases, the left and right-handed transversal subfields 

will exhibit mirror antisymmetry: when the left transversal subfield expands the right subfield 

contracts, and vice versa. The two subfields are not interchangeable under rotation, they are 

noncommutative at the same time.  

The top vertical subfield will move right to left, getting a negative sign, or left to right, getting a 

positive sign, toward the side of the intersecting field that contracts; moving in a pendular way 

left or right, this vertical subfield will be its own anti-subfield at different times. 

The mirror transversal subfields are characterized by an antiphase relationship with each other, 

yet each of them maintains phase coherence with the intersecting space that encompasses it.  

 
Fig. 1. Antisymmetric system fluctuating with opposite phases. 

Fig. 1 shows the antisymmetric system in two different moments. In a first moment, represented 

by A2, the left and right transversal subfields are mirror antisymmetric – when the right subfield 

contracts the left one expands – and the top vertical subfield moves toward right. A moment 

later, represented by A4, the left and right transversal subfields remain antisymmetric, having 

commuted their expanding or contracting states, and the top vertical subfield moves toward left. 

The left transversal subfield at moment A2 is mirror symmetric of the right transversal subfield at 

moment A4. And the top vertical subfield moving right at A2 is mirror symmetric of the top 

vertical subfield moving left at A4. When the top vertical subfield moves towards right at A2, it 

can be considered that it exists in a virtual way at A2, in the sense it has the potential to 

effectively exist a moment later, at A4, when moving toward the left.  

Owing to their mirror antisymmetry, the states of the left and right transversal subfields at 

moment A2 (or at moment A4) are mutually exclusive: when the left transversal subfield 

contracts, thereby increasing its density and inner orbital kinetic energy, the right-handed 

transversal subfield expands, leading to a decrease in its density and inner kinetic energy.  
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In this sense, their states can be said to be governed by an “exclusion” principle.  

The opposite states of the left and right transversal subfields are not superposed because, being 

mirror reflective subfields, they are different subspaces that reflect each other with a delayed or 

advanced phase of time.   

Within the framework of a dual composite system such as the one proposed in this model, both 

“superposition” and “exclusion” must be interpreted in terms of mirror symmetry or anti-

symmetry. 

1.2 Symmetric system 

In contrast, when the phases of vibration of the intersecting fields are equal, the transversal 

subfields will exhibit mirror symmetry simultaneously, being interchangeable under rotation. 

However, although they share the same phase, they will exhibit a phase opposition relative to the 

phase of the intersecting fields. 

 

Fig. 2. Symmetric system fluctuating with the same phases. 

Once the system exhibits mirror symmetry, the top vertical subfield aligns with the phase of the 

intersecting fields: when both intersecting fields contract, the top vertical subfield also contracts, 

ascending upward while emitting a pulsating force.  

Subsequently, when both intersecting fields expand, the previously ascending subfield will decay 

while expanding. When such a decay occurs, an inverted pushing force is generated on the 

convex side of the system by the positive (or convex) curvatures of the expanding intersecting 

fields.  

For a detector placed in the concave side of the system, the mass and energy that occur in the 

convex side of the intersection of the curved fields will be "dark" as directly undetectable. 

1.3 Vectors of force and types of interactions 

The pushing forces created by the contracting or expanding fields, with their inner negative 

curvatures or their outer positive curvatures, can be represented in a two-dimensional frame by 

means of 4 vectors.  
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Two converging vectors compressing a subfield imply a stronger force experienced by the 

contracting subfield whose volume decreases while its density increases, and its inner orbital 

motion experiences an acceleration or boost. The increased inner kinetic energy represents a 

greater bond that intertwines the intersecting fields in a stronger way.  

Two vectors decompressing a subfield represent a weaker force experienced by the subfield, 

which expands in volume, decreases in density, and decelerates in inner kinetic energy. The 

decreased inner kinetic energy implies a weaker bond between the two intersecting fields. In that 

sense, it can also be said that the strong and weak interactions between the two intersecting fields 

allows the subfields of their shared nucleus remain united with a greater or weaker bond.  

Alongside these strong and weak interactions, there will be an electric pushing force represented 

caused by the displacement of the vertical subspace when moving left or right in the 

antisymmetric system, or upwards or downwards in the symmetric system, and a magnetic force 

represented by their inner orbital motions.  

The symmetric sand antisymmetric systems may also be interpreted as the electric and the 

magnetic moments, respectively, of a rotationally evolving system.  

Additionally, the curvatures of the intersecting fields may be considered gravitational. They 

determine the mass and inner energy of their related subspaces. 

2. MATHEMATICAL FORMALISMS 

2.1 Rotational 2x2 complex matrices 

The symmetric and antisymmetric manifolds can be considered either as two separate and 

independent systems, as two systems related by supersymmetric partners, or as two topological 

systems that are periodically transformed into each other by the periodical synchronization and 

desynchronization of the phases of vibration of the intersecting fields, forming a supersymmetric 

manifold. Here, only the latter case will be considered. 

The complexity of system increases when considering it as a rotational structure. Let’s examine 

the rotation of the system around its axis by means of a group of complex 2x2 rotational 

matrices with a 90-degree rotation operator.  

The four elements of the matrices are visually represented as eigenvectors, with eigenvalue 1 or 

–1, which reverse their directions when rotating the complex plane. 

The four vectors actually change their position each time the whole plane rotates 90-degrees, but 

we can only distinguish that they have changed their direction. Such a change occurs when they 

commute their sign, which implies a multiplication of the eigenvector magnitude by 1 or –1, 

being flipped or reflected across its origin, or being permuted 180 degrees. 
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Fig. 3. Set of transformation matrices of eigenvectors  

Fig. 3 shows the collection of the four transformation matrices that result when rotating 90º the 

complex plane four times, performing the operations of transposition, inversion and complex 

conjugation.     

 

The identity matrix A1 represents the position of the eigenvectors of the symmetric system when 

the two intersecting fields, in phase, simultaneously contract. 

• Rotating A1 by 90 degrees gives us the transpose matrix A2, whose eigenvectors 

represent the forces of pressure in the antisymmetric system when the left intersecting 

field expands and the right one contracts. A2 is also the partial conjugation of A1. 

• Rotating A2 by 90 degrees gives us the negative reflection of A1, or A3. The A3 

eigenvectors represent the forces of pressure in the symmetric system when the two 

intersecting fields expand with the same phase. 

• Rotating A3 by 90 degrees gives us the transpose of A3, or A4. The A4 eigenvectors 

represent the forces of pressure in the antisymmetric system when the left intersecting 

field contracts and the right field expands. A4 is also the negative reflection of A2 and the 

second partial conjugation of A1. 

• Completing a 360-degree rotation by rotating A4 by 90 degrees gives us A1, which 

represents the initial situation when both intersecting fields simultaneously contract. 

2.2 Partial differentiation 

The eigenvectors determine the curvature of the subfields, and their sign commutation is related 

to the topological transformation of those subfields. That transformation can be described with a 

complex or a conjugate function of four variables. In that sense the commutation of the 

eigenvectors is related to the evolution of that function.  

This can be visually represented by considering that the slope of the eigenvectors being tangent 

to a point of a symbolic unit circle of radius 1. The commuted slope of the tangent eigenvectors 

represents a derivative related to the complex function represented by A1 and A3 matrices or 

related to the conjugate function represented by A2 and A4 matrices. 

 
Fig. 4. Eigenvectors as tangent slopes of a unit circle in the rotational matrices  
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Each 90º rotation changes the sign of only two eigenvectors with respect to the previous matrix. 

In that sense, the transposition performed by A2 represents a ½ order derivative of A1, as only ½ 

of the eigenvectors – the ones related to its main diagonal – have commuted their sign.  

A2 is a partial ½ complex conjugation of the complex matrix A1.  

If the commuted eigenvectors represent the spin of the subfields in the antisymmetric system 

related to matrix A2, those subfields will have a noninteger spin with respect to A1. In this case, 

their mirror counterparts will be governed by an exclusion principle. 

A3, the negative reflection of A1, represents an integer number of derivatives with respect to A1, 

as the four eigenvectors have already commuted their sign, although it only encodes a partial 

derivative with respect to A2 related to its second diagonal (upper left and bottom right 

eigenvectors).  

Therefore, to obtain the complete first order derivation of A1 given by ½ + ½ order derivatives, 

it is necessary to rotate the matrix 90 degrees twice, having previously performed a partial 

conjugation of A1. 

If the commuted eigenvectors represent the spin of the subfields in the symmetric system related 

to matrix A3, those subfields will have an integer spin with respect to A1. In this case, the 

transversal mirror symmetric subfields are not governed by an exclusion principle. 

However, the top vertical subfield with integer spin and its reflection counterpart located at the 

convex side of the system will still be ruled by an exclusion principle because when the top 

subfield contracts at the concave side of the manifold, its mirror reflection subfield will expand 

at the convex side.  

A4 encodes two positive eigenvectors with eigenvalue +1 with respect to A3. They represent a ½ 

order antiderivative with respect to A3. A4 also represents the whole first order derivative of A2 

(given by ½ + ½ order derivatives); A2 and A4 together form a whole complex conjugation with 

respect to A1. Therefore, to obtain the complete complex conjugation of A1, it is necessary to 

rotate the matrix 90 degrees three times. 

A1 represents the first order antiderivative of A3 (given by the ½ + ½ order antiderivatives), and 

the ½ antiderivative of A4. Therefore, to revert A1, the matrix must be rotated 90 degrees four 

times. 

The rotational dynamic of the eigenvectors represented in this group of complex matrices, seems 

to imply that the smooth evolution of the symmetric system represented by A1 (when the 

intersecting fields contract) and A3 (when a moment later the intersecting fields expand), loses 

its linear continuity by being interpolated between A2 and A4. 

In this sense, if the symmetric system is described by a complex ordinary differential equation 

and the antisymmetric system is described by the conjugate solution of the differential equation, 

then those separate equations can only describe the evolution of the physical states and 
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displacements of half of the dual system. In that case, the system may be incompletely described 

and could be defined only by statistical methods. 

2.3 Rotational interpolation 

 

 

Fig. 5. Rotational system, visual representation  
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Diagram, Fig. 5, represents the fractional commutation of the eigenvectors embedded in the 

rotational nucleus of subfields shared by the intersecting fields. 

The subfields depicted change their shape when the 90-degree rotation is performed, contracting 

or expanding, moving left or right, or ascending or descending – because of the fluctuation of the 

intersecting fields.  

However, the conformal or nonconformal nature of the model is not clear enough, as it will be 

mentioned in the model inconsistencies. 

The interpolation between the symmetric and antisymmetric systems may be related to Sobolev 

interpolations [1], where “spaces of functions that have a noninteger number of derivatives are 

interpolated from the spaces of functions with integer number of derivatives”. 

In the antisymmetric conjugate system, Sobolev embedding may be represented by the right 

contracting transversal subfield at moment t (matrix A2), being virtually embedded inside of the 

right expanding transversal subfield at moment t’ (matrix A4):    

  

 
Fig. 6. Matrices interpolation 

 

 
Fig. 7 Sobolev function spaces interpolation 
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2.4 Convolution 

The combination of the complex ordinary function of four complex variables, represented by 

matrices A1 and A3, and the complex conjugate function represented by matrices A2 and A4, can 

also be described as a convolution [2].  

By adding the products of the four transformation matrices that represent partial conjugations of 

the previous state, the identity matrix that represents the complex function is obtained.    

2.5 Harmonic functions 

The conjugate function given by A2 and A4 is a conjugate harmonic of the complex function, and 

vice versa. The complex and the conjugate function are, in the context of the rotational system, 

interdependent and cannot exist without each other.  

Antisymmetry arises in the conjugate system of A2 and A4 by introducing a change in phase in 

one of the sides of the reflection, while the other side keeps following the unchanged phase of A1 

and A3. This change in phase can occur by a gradual desynchronization, or suddenly, when a 

rotation occurs changing the sign of ½ eigenvectors.  

The addition of the main and harmonic phases can be performed with a Fourier transform [3]. 

2.6 Bäcklund transformations 

The constructive interdependence of the complex and conjugate functions represented by the 

complex A1 A3 and the conjugate A2 A4 matrices respectively can be interpreted as well as 

Bäcklund transformations, where the conjugate function transforms the complex function and 

vice versa.  

The prototypical example of a Bäcklund transform [4] is the Cauchy-Reimann system, where “a 

Bäcklund transformation of a harmonic function is just a conjugate harmonic function”. 

2.7 Operator algebras 

The symmetric and antisymmetric systems can also be described as two independent groups of 

cyclic eigenvectors that form two von Neumann algebras: an antisymmetric automorphic algebra 

and a symmetric automorphic algebra, which imply antisymmetric and symmetric mirror 

reflection algebras, respectively.  

However, both independent algebras can be related by means of modular combinations, which, 

in the context of our rotational matrices and interpolated functions, are the combinations of the 

transform matrices whose operations imply fractional derivatives or antiderivatives.  

Modular combinations of von Neumann algebras are studied by Tomita-Takesaki (TT) theory [5]. 

In TT theory two intersecting algebras form two shared “modular inclusions” (with + - “half 

sided” subalgebras) and a “modular intersection” (with an “integer sided” subalgebra).  
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The left and right half handed subalgebras will be images of each other, when they are 

commutative, or they will not be their mirror image when they are noncommutative. Mapping 

the modular inclusion to its reflection image, the left and right subalgebras will be the opposite 

image of each other (reverting their initial signs) if they are commutative; if they are 

noncommutative, the initial left sided subalgebra will be the image of the right sided mapped 

subalgebra, and the initial right-handed subalgebra will be the image of the left sided mapped 

subalgebra.  

TT theory decomposes a linear transformation into its modular building blocks, revealing 

automorphisms.  

Decomposing the bounded operator, it obtains the modular operator and the modular conjugation 

(or modular involution) which is a transformation that reverses the orientation, preserving 

distances and angles.  

Translating the abstract algebraic terms to the fields model, two intersecting algebras would 

represent the two intersecting fields fluctuating with the same or opposite phase. 

The half handed subalgebras (or “modular inclusions”) will be the transversal subfields of the 

nucleus shared by the intersecting fields, while the integer handed subalgebra (or “intersection 

inclusion”) will be our vertical subfields. In this context, we identify commutativity and 

noncommutativity with mirror symmetry and mirror antisymmetry, respectively. 

The bounded operator that is decomposed will be the 90-degree rotational matrix; The modular 

building blocks are the set of matrices that are obtained when applying the operator. The modular 

operator will be the ½ partial conjugate A2 matrix; And the modular conjugation will be the 

conjugate matrix A4, which forms the whole conjugation by adding the fractional conjugations ½ 

+ ½.   

Therefore, by separating the conjugate matrix from the complex one the automorphism of the 

antisymmetric conjugate system is found.  

The half sided algebras that form a modular inclusion are noncommutative, it means we are in 

the antisymmetric system where the left intersecting field contracts while the right one contracts 

and vice versa; in that system, the left transversal subfield will be the mirror symmetric image 

(it will be the mapped image) of the right transversal subfield when, later, the left intersecting 

field expands and the right one contracts.  

In that sense, a past half handed subalgebra is being mapped with its future image. A time delay 

will exist between both subalgebras. 

Considering Δ as the modular operator A2, J the modular conjugation A4, and M the intersection 

of two Von Newmann algebras, Δ^-Yt M Δ^it will represent the positive and negative ½ sided 

modular inclusions of the modular operator, being t a real time dimension and it an imaginary 

time dimension given by the partial conjugation of A1 or A3.  



   

 

  11 

 

It is this different time dimension what makes noncommutative, as non-interchangeable, the 

modular + and - inclusions related to Δ in the antisymmetric system.  

Applying the modular involution, yields J^yt M’ J^-it.  

Δ^-yt is transformed into J^yt and Δ^it is transformed into J^-it’, being J^yt M’ J^-it 

the involutive automorphism of Δ^-yt M Δ^it.  

The noncommutative, as non-interchangeable, Δ^-yt and Δ^it become commutative or 

interchangeable through time at J^yt M’ J^-it, fixing their antisymmetry in that way. 

The same type of operations can be performed by taking A2 as the identity matrix. Rotating 

clockwise, A3 would be the modular operator and A1 the modular conjugate automorphism.  

2.8 Vertex operators 

Among the numerous mathematical developments relevant to the intersecting model, we can also 

highlight the vertex operators' formalism [6], where fields are inserted at specific locations of a 

two-dimensional space.  

In the introduced fields model, the vertex point is the point of intersection between the left and 

right intersecting fields.   

This intersection point would represent a unified coupling gauge point, which will be displaced 

upward or downward in the symmetric system or leftward or rightward in the antisymmetric 

system." 

2.9 Reflection positivity 

Related to the delay in time in the antisymmetric system, it can also be mentioned a property that 

all unitary quantum field theories are expected to hold: “reflection positivity” (RP). [7] 

The positive increasing energy that appears in one side of the mirror system should also be 

reflected in the other side. However, in the context of the antisymmetric system, the positive or 

increasing energy of the contracting right transverse subfield does not mirror simultaneously in 

the expanding left transverse subfield, which exhibits negative or decreasing energy.  

Therefore, to obtain a positive energy reflected at the left side, making the sides of the system 

virtually symmetric, a time reversal operation is needed.  

To observe the positive energy reflected at the left side, it will be needed to go back in time to 

the moment where the left transversal subfield was contracting and had a positive energy. This 

operation is performed by a type of “Wick rotation”. [8]     

The main time phase of the symmetric system can be represented with the Y coordinate.  

By performing a partial conjugation that involves a fractional derivative, the time coordinate Y 

undergoes a rotation into the purely imaginary dimension within the complex plane. At that 
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moment, the mirror system becomes antisymmetric as one side of the system keeps following the 

imaginary time of Y while the other side follows a harmonic phase. A positive or negative time 

lag has been introduced.   

Reversion time on one side of the system serves as a symbolic tool to virtually restore symmetry 

to the time phases. To revert to the previous time, one could perform a reverse rotation of the 

complex time axis (X +iY) to achieve a full complex conjugation at (–X –IY).  

In the A matrices context, that time backwards rotation represents an antiderivative of -A.  

 
Fig. 8. Rotational time backwards and forwards   

When the time reverse has been symbolically completed, in the left side of the mirror system the 

left subfield will be contracting, having an increased positive energy; this is a past reflection of 

the future positive energy that there will be a moment later in right side.  

 
Fig. 9. Reflection positivity in the antisymmetric system   

 

In the reverse past time, at the right side of the system the right subfield will be expanding 

having a decreased negative energy.   
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In regard to the symmetric system, positivity is reflected between the right and left transverse 

subfields at the same time. In that sense, it’s not necessary to use the Wick operation to reverse 

time. Both left and right transversal subfields will be the mirror reflection of each other at the 

same time.  

However, in the case of the strong interaction in the symmetric system, when the contracting 

vertical subfield has an increased positive energy while ascending to emit a pushing force, it will 

be necessary to virtually visit a past moment to look for a previous state where positivity could 

be reflected.  

Going back in time, the vertical subfield will be losing its energy while expanding, moving 

downwards. Therefore, at that past moment, the vertical subfield will not display a positive 

energy. 

Reflection positivity, however, can be found at that past moment in the convex side of the system 

of the two intersecting fields, where an inverted subfield with convex curvatures will be 

experiencing an increased energy.  

That inverted subfield can mirror the vertical subfield which in a future state will be ascending in 

the concave side of the system through the Y axis. 

 

      

Fig. 10. Reflection positivity in the symmetric system 

 

The missing reflection positivity in the concave side of the system in the strong interaction can 

be related to a mass gap problem when it comes to the weak interaction.  
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2.10 Mass gap problem 

There will be a mass gap [9] in the system when the two intersecting fields simultaneously 

expand, and the vertical subfield experiences a decay of energy.  

This case represents the ground state with the lowest possible energy of the vertical subfield, 

which is always greater than 0 because the highest rate of expansion of the intersecting fields 

prevents them from having zero curvature. 

The zero point of the vacuum, where there should be no energy nor mass, is placed at the point 

of intersection of the XY coordinates, and that point is never reached by the vertical subfield that 

descends through the Y axis while expanding during its decay.  

An “upper” mass gap would be referred to the highest possible mass of a particle in the strong 

interaction. Its limit would be given by the greatest rate of contraction of the intersecting spaces. 

Fig. 11 represents graphically the mass gap in the symmetric system; the upper gap occurs in the 

compressed photonic subfield when both intersecting fields contract, while the lower gap occurs 

in the decompressed subfield when both intersecting fields expand: 

 

  

Fig. 11. Mass gap in the symmetric system 

The zero point of the vertical subfield is marked in yellow on the above diagram, at the point of 

intersection of the left and right intersecting fields.  
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The gap is given by the distance from that point to the zero point where the X and Y coordinates 

intersect, represented by a red mark. An arrow shows the gap distance between those critical 

points.  

However, in this model, the zero point does not represent a vacuum where neither energy nor 

mass exists.  

When the mass and energy of the vertical subfield reach their weakest level in the concave side 

of the symmetric system, an equivalent amount of energy and mass arises in the convex side, 

where the zero point is located, as the result of the double pushing force caused by the 

displacement of the positive curvature of the expanding intersecting fields.  

That mass and energy at this zero point will be considered dark from the point of view of the 

concave side of the system.  

In the antisymmetric system, the lowest energy level occurs when a transverse subfield 

experiences a double decompression due to the displacement of the concave curvature of the 

contracting intersecting field and the displacement of the positive curvature of the expanding 

intersecting field.  

The corresponding double compression is then experienced by its mirror antisymmetric 

transverse subfield. 

Fig. 12. Represents visually the map gap in the antisymmetric system, with the left and right 

displacements of the point of intersection:  

Fig. 12. Mass gap in the antisymmetric system 
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2.11 Jacobian conjecture for four variables  

The Jacobian conjecture [10] states that if a polynomial function from an n-dimensional space to 

itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial 

inverse. 

A1 and A3 can be considered as Jacobian matrices that contain the first order derivative of the 

complex vector-value function of four variables. A2 and A4 can be considered as Jacobian 

matrices that contain the first order derivative of the complex conjugate vector-value function of 

four variables. The constant determinant would be the 90-degree rotational operator, which 

causes the commutation of the signs of the eigenvectors that represent the matrix elements with 

eigenvalue 1 or -1.  

The eigenvectors are the four variables of these Jacobian functions. They represent the forces of 

pressure caused by the negative or positive curvatures of the intersecting fields while contracting 

or expanding, determining by pairs the displacements, curvatures, and physical properties of the 

subfields.   

However, the rotation of the whole system implies an interpolation between the complex and the 

complex conjugate functions. In that way, to operate the first order derivative that causes the 

inversion and the negative reflection of the antisymmetric system, mapping A2 to A4, it will be 

necessary to operate a ½ order derivative, plus a ½ order antiderivative given by a partial 

conjugation of the positive antisymmetric system represented by A2, and a partial conjugation of 

the negative symmetric system represented by A3.   

In the antisymmetric system, the A2 right contracting transverse subfield at moment T1 is 

mapped to the A4 left contracting transverse subfield at moment T2, and the left expanding 

subfield A2 at T1 is mapped to the right expanding transverse subfield A4 at T2. In the rotational 

framework, the applied mirror reflection implies that the subfields physically interchange their 

positions after a 180-degree rotation, resulting in an inversion of A2 at A4. The antisymmetric 

system A4 at T2, which maps the antisymmetric system A2 at T1, represents its negative 

reflection. 

However, when the phases of vibration of the intersecting fields are equal, and so the transverse 

subfields exhibit mirror symmetry simultaneously, a 180-degree rotation will not map the left 

and right transverse subfields to each other because the transverse subfields will be contracting 

after the 180-degree rotation and are therefore not isometric to the unrotated subfields. However, 

in this case, the vertical subfield will have been mapped to an inverse vertical subfield located on 

the convex side of the system. 

The mirror transverse subfields are described by the same spatial dimension, which cannot be the 

same dimensions related to the intersecting fields, because the Y coordinate of the transversal 

subfields will correspond to a diagonal axis in the intersecting fields. Using the same referential 

metric for the dual system and the subsystem will introduce an irrational elongation of the 

spacetime. 
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In the antisymmetric system, one of the transverse subfields will follow a delayed time that 

represents a purely imaginary time dimension, distinct from the non-delayed real time followed 

by the other-handed transverse subfield. 

The smooth quantization of the system is introduced by the periodic 90-degree rotation, which 

creates the interpolation between the complex function describing the symmetric space system 

related to matrices A1 and A3, and the harmonic conjugate function describing the antisymmetric 

space system related to matrices A2 and A4. 

Both vectorial functions have four variables. However, each 90-degree rotation entails a partial 

conjugation relative to the previous situation, as only two of the four eigenvectors will exchange 

their signs. This implies a ½ order derivative or a ½ order antiderivative. The map of the 

antisymmetric system requires the inversion provided by a ½ derivative (exchanging the signs of 

two eigenvectors with respect to the positive symmetric system) plus a ½ antiderivative (anti-

exchanging the signs of two eigenvectors with respect to the negative reflection of the symmetric 

system). 

• A1 (0-degree rotation) represents the eigenvectors in the symmetric system, when the 

transversal subspaces have mirror symmetry at the same moment; performing its partial 

conjugation (rotating the plane 90-degree) only two eigenvectors (acting as two 

variables) change their sign at A2.  

• A2 (90-degree rotation) represents the eigenvectors when half of the system has a delayed 

its phase, introducing a purely imaginary time dimension) having mirror antisymmetry 

with respect to the other half side. A2 represents a ½ order derivative of A1.  

• A3 (180-degree rotation) represents the partial conjugation of A2 (only the yet two 

uncommuted eigenvectors commute now their sign with respect to A2); A3 also 

represents the negative reflection of A1; its four eigenvectors (acting as four variables) 

have already commuted their sign with respect to A1; A3 represents the ½ order 

derivative of A2, and the first order (½ + ½) derivative of A1.  

• A4 (270-degree rotation with respect to A1, 180-degree with respect to A2, and 90-degree 

with respect to A3) represents the transpose of A3, the ½ order antiderivative of A3, the 

second transposition of A1, and the first order (½ + ½) derivative of A2; A4 is also the 

negative mirror reflection of A2, having commuted their sign the four eigenvectors.  

• An additional 90-degree rotation produces A1 which represents the positive reflection of 

A3, a ½ order antiderivative of A4, and the first order (½ + ½) antiderivative of A3. 

 

Then, considering A2 as a starting point, the rotational inversion operated to obtain its negative 

map at A4 implies two partial conjugations, the partial derivative of A2 given by A3, and the 

partial antiderivative of A3 given by A4. In that sense, to obtain the map of A2 it’s necessary to 

perform the partial inversion of A3. 
 
The dual fields model then suggests a relation between the Jacobian conjecture for four variables 

and the partial commutation of the four eigenvectors of pairwise commuting matrices associated 

to the polynomial map related the complex function, and the polynomial map related to the 

interpolated harmonic complex conjugate function.   
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In that context, the inversion proposed by the Jacobian conjecture would be related to Sobolev 

interpolations, Fourier inverse, Reflection positivity, and Tomita Takesaki modular conjugation 

in the terms previously seen. 

 

2.12 Representation theory 

In the context of representation theory, we may also interpret the antisymmetric system of 

subspaces represented by the matrix A2 as an original vector space, and its negative mirror 

reflection matrix A4 as a dual vector space.  

To connect A2 and A4, forming their isometric automorphism through time, it is necessary to 

pass through A1 (the identity matrix) and A3 by means of the fractional differentiation or partial 

conjugation given by the transformation matrices when the 90-degree rotational operator is 

applied.  

The bridge that fixes the gap between A2 and A4 would be related to the Langlands 

parametrization.  

The Langlands dual group that allows the creation of the automorphism between the subspaces 

of the antisymmetric system will be represented by the conjugate matrices A2(90º) and 

A4(270º), and the complex matrices A1(0) and A3(180). 

The two eigenvectors that determine the curvature of each transversal subspace and the sign 

commutation of ½ of each pair, causing the transformations of the system, would be related to 

Cartan-Killing pairing. 

Additionally, considering as an example the antisymmetric system where the left transversal 

subspace L contracts at t1 while the right transversal subspace R expands at t2, and the left 

transversal subspace expands at t1’ while the right one contracts at t2’, it can be suggested that 

the expanding Lt1’ will be the functional Galois extension of Lt1, and Rt2 will be the 

functional Galois extension of Rt2’, connecting the intersecting fields model as well with the 

Langlands program. 

The collection of 2x2 complex matrices may also be related to Bethe [11] transfer matrices of 

eigenvectors related to complex and conjugate functions in the context of quantum integrable 

systems. 

The unit circle mentioned at the beginning may be interpreted as a flattened version of the unit 

sphere, which is a visual way of representing geometrically the rotations of nuclear spins in ½ 

particles. This unit sphere is also related to the Bloch theory. [12] 

2.13 The role of pictures in Klein’s research  

On the other hand, it can be interesting to mention that “a significant role in Klein’s research” - 

when he developed the geometric theory of automorphic functions, combining Galois and 
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Riemann ideas - “was played by pictures” related to “transformation groups (linear fractional 

transformations of a complex variable)”. [13]  

Klein’s hand-drawn diagram [14] related to elliptic modular functions is the same two-

dimensional figure of four subspaces that we have seen forming the cobordant nucleus shared by 

the two intersecting fields.  

The left and right transversal subspaces display a combination of half convex and half concave 

curvatures. The top vertical subspace presents a concave curvature, and the vertical inverted 

subspace exhibits a double convex curvature. 

3. CONCEPTUAL TRANSLATION TO A QUANTUM MECHANICS MODEL   

Once this model has been presented in a general way, we will try to describe it in terms of an 

atomic nucleus using a hypothetical approach that follows the symmetry or antisymmetry 

implicit in the Pauli exclusion principle. 

The composition of the atomic antisymmetric nucleus will depend on the specific moment of the 

system’s evolution. It may consist of a proton, a positron and a neutrino, or an antiproton, an 

electron, and an antineutrino. 

3.1 Antisymmetric system, the left intersecting field expands while the right one contracts (A2) 

• The right contracting transversal subspace will represent a proton. 

• The left expanding transversal subspace will represent a neutrino. 

• The vertical subspace moving toward the right will represent a positron.  

3.2 Antisymmetric system, the left intersecting field contracts while the right one expands (A4)  

• The right contracting proton will expand, becoming a right expanding antineutrino.  

• The left expanding neutrino will contract, becoming a left-handed contracting antiproton.  

• The vertical positron will move toward the left, becoming an electron. 

 

Fig. 13 visually represents the limit states of the evolution of the antisymmetric system; however, 

it does not reflect the moment when the top vertical subfield passes through the central axis, 

which is the reference center of symmetry of the system, carrying a neutral charge. 

It is considered neutral because it is placed in the location used to distinguish between positive or 

negative: from that central point to the right the charge will be positive, and from that point to 

the left it will be negative.   

This neutrality will occur during the intermediate expansion or contraction of the intersecting 

fields. In that case, the proton (or antiproton) transversal subfield, and the neutrino (or 

antineutrino) transversal subfield will show an isomorphic shape and their positive and negative 
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charges will be in compensation. It may be at that moment when the notion of neutron and 

antineutron arises.  

 

Fig. 13. Antisymmetric system at moment 1 (related to A2) and moment 2 (related to A4) 

 

On the other hand, Fig. 13 diagram shows how the right-handed proton at moment A2 will decay, 

being virtually embedded in a right-handed antineutrino at moment A4, both in the right side of 

the mirror system. 

Simultaneously, in the left side of the antisymmetric system an antiproton and an electron arise.  

Later, the left-handed antiproton of A4 will decay into a left-handed neutrino at A2, while in the 

right side of the mirror system a proton and a positron will arise.  
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Proton and antiproton, and neutrino and antineutrino, will be Dirac antiparticles at different 

times.  

Positron and electron are the same subfield, acting at different times as their own mirror 

reflection Majorana [15] antimatter. 

The existence of an electron and a positron in the same atom, also known as “positronium” [16], 

was predicted by Dirac in 1928. However, positronium was formulated as an exotic atom with no 

proton in its nucleus. 

The coexistence of proton and antiproton in the same atom is currently accepted as an exotic 

structure called “protonium” [17] with no electrons nor positrons.    

In the dual atomic model, when it comes to the transversal subfields of the antisymmetric 

nucleus, isometric matter and antimatter are mutually exclusive at the same time, but they coexist 

as the chiral antisymmetric – with and advanced or delayed time phase – reflection of each other 

at the same moment, and as the chiral symmetric reflection of each other at different moments.  

All the subfields in the antisymmetric system are fermions with noninteger spin, represented by 

the commuted eigenvector, being ruled by the Pauli exclusion principle. In that regard, they 

should adhere to Fermi-Dirac statistics, although the dual atomic nucleus is a causal model that 

can be described without using probability. 

Additionally, in that same context, considering an antisymmetric Schrödinger’s cat [18] as a 

figurative example, it could be said that the right alive contracting cat will be the delayed 

reflection of the left dead expanding cat, and vice versa.  

It can be discussed whether they are the future or the passed reflection of each other, but that will 

only be a way to speak. There will not be a single alive and dead cat, but two identical cats with 

opposite states and positions. Their simultaneous states of being “alive” and “dead” can be 

considered “superposed” but in the context of their mirror antisymmetry. 

It is visually represented in Fig.14:   

  

Fig. 14. Dead and/or alive Schrodinger cats in mirror antisymmetric and symmetric systems 



   

 

  22 

 

3.3 Symmetric system, when the left and right intersecting fields contract (A1)  

• The right and left expanding transversal subspaces represent a right-handed positive and a 

left-handed negative gluon. 

• The top vertical ascending subspace that contracts receiving a double force of 

compression will be the electromagnetic subfield that emits a photon while pushing 

upward.  

• The inverted bottom vertical subspace at the convex side of the system represents the 

dark decay of a previous dark antiphoton.    

 

 

Fig. 15. Antisymmetric system at moment 1 (related to A2) and moment 2 (related to A4) 
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3.4 Symmetric system, when the left and right intersecting fields expand (A3)  

• The right and left expanding transverse subspaces may represent -W and +W bosons. 

• The top vertical descending subspace will be the electromagnetic subfield losing its 

previous energy, after having emitted a photon.  

• The bottom vertical subspace at the convex side of the system is the dark anti 

electromagnetic subfield that emits a dark antiphoton. 

It can be visually observed in Fig. 15 that the left and right transversal subspaces will be mirror 

symmetric antimatters at the same time, being bosons not ruled by the Pauli exclusion principle. 

They should then obey the Fermi-Dirac statistics.   

However, the photon and the dark antiphoton – or the vertical subfield from which they emerge –

are mutually exclusive. Therefore, they are governed by the Pauli exclusion principle, even 

though they have an integer spin represented by the two converging eigenvectors. 

The identity of the symmetric transversal subfields, labeled before as “W bosons” and “gluons” 

requires further clarification.  

Each of those subfields receives a bottom inward pushing force and a top outward 

decompression – in the strong interaction – or a top inward pushing force and a bottom outward 

decompression – in the weak interaction.  

In the strong interaction, the magnitudes of the pushing forces caused by contracting or 

expanding intersecting fields will be different, because the contracting field exhibits a higher 

density, intensifying the propulsive force caused by the displacement of its negative curvature.  

The vertical photonic subfield receives an inward double pushing force from right to left and 

from left to right caused by the displacement of the negative curvatures of the intersecting fields.  

These pushing forces are the same as those that decompress the transversal subfields – labeled as 

gluons – at that moment. The emitted photon would have a double helix spin.    

The pushing forces received at different moments by the moving right positron and the moving 

left electron in the antisymmetric system, now converge simultaneously in the photonic subfield.   

From the perspective of this model, the transversal subspaces are the same topological subfields 

that contract when the intersecting fields expand in the weak interaction or expand when the 

intersecting fields contract in the strong interaction.  

The strong and weak interactions, then, are related by the same mechanism. And the mirror 

transversal subfields that mediate the strong and weak interactions are the same topological 

subspaces that are transformed through time.    

3.5 Supersymmetry 

The model is N=1 because it relates in a supersymmetric way, through time, each fermionic 

subfield of the antisymmetric system with a bosonic subfield of the symmetric system.  
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In that sense:  

• The fermionic electron-positron subfield will be the superpartner of the bosonic vertical 

subfield that emits the photon when ascending.  

• The fermionic proton-antineutrino subfield, and the fermionic antiproton-neutrino 

subfields will be the superpartners of the symmetric transversal right and left subfields 

respectively, when they contract or expand.  

In that way, the symmetry of the system is preserved through time. The modular Hamiltonian of 

the system also remains invariant through time. 

3.6 Gravity and electromagnetism 

On the other hand, the curvatures of the intersecting fields in this model are considered 

gravitational in both the symmetric and the antisymmetric systems. This implies that 

gravitational fields fluctuate or vibrate.  

In this model, the electromagnetic charges are considered to be the pushing forces caused by the 

displacements of the subfields of the nucleus. These displacements are generated by the 

expansion or contraction of the intersecting gravitational fields that form the nuclear system, 

while expanding or contracting. The mass and energy of the nuclear subfields are also 

determined by the pushing forces derived from the variation of the intersecting gravitational 

fields.  

In a different way, pushing gravity was already considered since Newton’s time by Fatio and 

later Le Sage [19] [20] and others but was abandoned at the beginning of the XX century since 

Michelson and Morley demonstrated the nonexistence of a required ether.  

However, today it is generally accepted that the Higgs field permeates the whole universe, and 

that the Higgs mechanism confers mass to the particles, by means of the Higgs bosons, which are 

the force carrier particles that represent the excitations of the Higgs field.    

In that context, the variations in the intersecting gravitational fields may be considered "gauge 

bosons", and the dynamics of the intersecting system may be considered a Higgs mechanism.  

3.7 Dirac spinors 

A Dirac spinor is a group of four complex vectors that provide information about left or right 

handedness and about up or down orientation in a 4-dimensional space with 1 time dimension.   

Using that formalism, it can be said that in the complete description of the dual atomic model 

four spinors are needed, two spinors for the fermionic system and two for the bosonic system.  

Regarding the antisymmetric fermionic system of matrix A2, the magnetic spinor will be formed 

by the four right-handed eigenvectors. In that case, the ½ spin of the mirror reflection left and 

right transversal subfields or fermionic particles is formed by the right-handed down 
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eigenvectors, which represent the partial conjugation of matrix A1 and a fractional number of 

derivatives. The state of each transversal subfield is determined by pairs of up and down 

eigenvectors, as explained before.  

The dual atomic model uses two-time dimensions to describe the different phases of the 

antisymmetric dual nucleus. The dynamics of the spinor related to A4 can be interpreted as a 

time reverse direction with respect to A2. The four eigenvectors of matrix A4 represent the left-

handed spinor, which is the negative reflection of the spinor of A2.  

The four eigenvectors of matrix A1 form a bosonic spinor: two right-handed up eigenvectors and 

two left-handed up eigenvectors.  

The negative reflection bosonic spinor of matrix A3 will be formed by two left-handed down 

eigenvectors and two right-handed down eigenvectors, combined in the ways previously 

described.    

3.8 Supersymmetric quarks 

The physical pushing forces created by the displacement of the intersecting fields when 

contracting or expanding, previously represented as eigenvectors, may be interpreted as “quarks” 

in the QCD terminology. 

When a 90-degree rotation operator is applied, only two quarks change signs and the symmetric 

system becomes antisymmetric, and vice versa.  

This cyclic invariance of the eigenvector quarks explains that their symmetry is preserved 

through time in a supersymmetric way.  

Fig. 16 shows how the supersymmetric fermionic and bosonic “quarks” are transformed through 

time by periodically changing their sign by pairs. 

 

   

Fig. 16. Supersymmetric bosonic and fermionic quarks 
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3.9 Spatial topology 

The two possible signs of the unitary eigenvectors may be related to the Hilbert space of 

dimension 2 we use a simplification of the higher dimensional system.  

The space we have described for the bosonic symmetric and the fermionic antisymmetric 

systems can be considered a Minkowski space of 4 coordinates for two different frames of 

reference: x, y, z, t – for a real frame of reference – and x’, y’, z’, t’ – for a complex frame of 

reference whose coordinates are rotated 45 degrees relative to the real ones. 

The 45-degree rotation of the coordinate system implies a partial conjugation that introduces the 

antisymmetry in the system, as previously noted. 

A different time dimension for the bosonic and fermionic systems is necessary to describe their 

different dynamics, either because the subfields have an opposite phase between them, 

introducing a time delay in their mutual reflection, or because the subfields have an opposite 

phase with respect to the vibrations of the intersecting fields. 

The dual atomic model suggests that the bosonic system is also antisymmetric in regard to the 

different phases of the transversal subfields with respect to the vertical subfields, which follow 

the phase of the intersecting fields.  

The introduced model can be described in terms of moduli spaces of a Higgs bundle. Higgs 

bundles [21] were introduced by Nigel Hitchin. In the present model, the two intersecting fields 

would represent a Riemann geometry system.  

The vertical subspace (and its mirror inverted counterpart) would represent the Higgs field that 

mediates between the left and right transversal subspaces, giving them their masses.  

Both the left and right transversal subspaces, together with the intermediate Higgs field, form the 

moduli space of Higgs bundles.  

The transversal subspaces represent the boundary components of the moduli space, while the 

Higgs field acts as a bridge between them. Those boundary components are frequently 

represented by two transversal tori.  

Quantum mechanics has been developed mainly in an abstract mathematical way with no visual 

spatial references. However, the tori geometry is generally used in different ways by many 

theories to aid visualization and simplify calculations. 

The intersecting spaces model can also be thought in terms of the topology of a two genus [22] 

torus, considering the outer positive and the inner negative curvatures of the torus as the 

simultaneous representation of the expanding or contracting moments of the vibrating fields 

when looking at them from above, in an orthographic projection represented in Figs. 17 and 18. 
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Fig. 17. Two genus torus projection of the antisymmetric system 

 

Fig. 18. Two genus torus projection of the symmetric system 
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The symmetric and antisymmetric subfields can be described as cobordant [23] subspaces. The 

vertical subspaces share borders with the left and right transversal subspaces, and they all share 

borders with the two intersecting spaces. These borders can be thought of as unidimensional 

lines described by the curvatures of the intersecting fields. 

The geometry of the intersecting fields model can be also related to Hyperkahler and Kummer 

quartic surfaces [24]. 

On the other hand, the shape of the nuclear transversal subfields, on the symmetric or 

antisymmetric diagrams, resembles the shapes drawn by Lobachevsky [25] when explaining his 

imaginary geometry.  

The topology of the nuclear system may also be described in terms of two double oscillators.  

Note that the inner curvature of both transversal subfields is half negative (curved inwards) and 

half positive (curved outwards). The top vertical subfield in the symmetric and antisymmetric 

system will have an inner concave curvature, while the bottom inverted vertical subfield will 

have a double region of positive or convex curvatures. 

The topology of the nuclear system may also be described in terms of two double oscillators, 

four coupled vortices. 

The curvatures of the intersecting fields can also be described in terms of longitudinal waves.   

3.10 Special Relativity 

Different mathematical transformations, such as Fourier transforms and Wick rotations, are 

being used to make antisymmetric systems operationally symmetric.  

Mathematical transformations will also be required to relate the two sets of coordinates 

associated with the fermionic and bosonic systems.  

The main difficulty is that the YX coordinates and the diagonal axis that divides the complex 

plane are referenced by different metrics. One point at Y cannot be rotated to X + iY without 

increasing the spatial distances, and so the time needed to cover them, as it happens in Special 

relativity.  

The same happens with the hypotenuse of a right triangle when trying to measure it with the 

reference metric of the legs.  

The infinite decimals of irrationality arise when two different frames of reference are being 

measured with the same gauge. 

The metric issues between the two reference frames can be managed by adding additional spatial 

dimensions to separately describe each space-time system or subsystem (in the case of the 

transversal subfields).  
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3.11 Möbius transformations 

However, a type of mathematical transformation is needed to relate the coordinates of the two 

reference frames. This is the subject of Lorentz transformations in special relativity, which are a 

type of Möbius transformation [26]. 

Möbius transformations can be used to project the Y and X coordinates to the imaginary points at 

X’ and Y’, virtually removing the complex plane while preserving the angles. 

It can be superposed on a same picture the real and complex planes of the symmetric and 

antisymmetric systems, representing the result of convolving the complex and conjugate 

functions, as if the four partial conjugations were taking place at the same time. 

The complex plane can therefore be treated as a real plane.  

 

Fig. 19. Superposition of spaces and times evolution. 
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Fig. 19 simultaneously shows all the possible states that the vectors get through time, including 

the left and right displacements related to the fermionic nucleus (from a central axis Y towards a 

projected +Y’ or –Y’), and the upward and downward displacements related to the bosonic 

nucleus (from a central axis X toward a projected +X’ or –X’), which can be interpreted as a 

nuclear precession. 

By means of the vectors in the diagram, the symmetry of both bosonic and fermionic systems is 

shown to be reached over time. The supersymmetric topological transformation of the nuclear 

subfields, which may take place by means of phase synchronization, the rotation of the whole 

system, or both, is a spatial and temporal gauge transformation. 

 

3.12 The emergence of imaginary time  

From the perspective of a dual atomic model, time – as a necessary reference for measuring 

variation – is a notion that cannot be separated from space in regard to periodically varying folds.  

However, between the moment of the highest expansion or contraction, until the opposite 

contraction or expansion starts, there will be a period of no spatial variation that may be 

interpreted as no time.    

In the case of a composite manifold with different phases of variation, an additional dimension 

for the emerging time is needed.   

Considering time as a real axis tY in the symmetric modular group A1 A3, the partial 

conjugation operated by a 90-degree rotation introduces in the system a new time coordinate ti, 

which is purely imaginary and causes the emergence of the spatial-time antisymmetry in the 

modular group A2 A4.  

Using the previously mentioned Tomita Takesaki terminology, the handed sides of the modular 

operator A2 (and the sides of its automorphic modular conjugate A4) become antisymmetric 

because half of the system will follow the real time tY, while the mirror side will follow the new 

imaginary time ti, creating a time-gap between both sides of the modular operator and, later, of 

the automorphic modular conjugate. 

The imaginary time is not only a symbolic cartesian formalism, but also a mathematical way to 

describe the dynamics of the rotational system that needs a second time dimension to refer to the 

harmonic ti phase introduced in the modular group by partial conjugation.  

Commuting the sign of half of the eigenvectors while leaving the other half unchanged implies a 

partial differentiation that can be interpreted as a fractional derivative or antiderivative, as we 

saw before. That fractional derivation creates the harmonic or fractional imaginary time and the 

fractional spins in the modular antisymmetric – anticommutative group.  

Fractionality is responsible for the disruption of symmetry inherent to the commutative - or 

interchangeable - group, causing the antisymmetry associated with the anticommutative group.    
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4. RELATIONS WITH OTHER THEORETICAL MODELS 

To conclude, we can relate the atomic model to other theories and developments, using a visual 

approach as well. 

 

4.1 String theories 

In the context of string theories, the border of the positive and negative curvatures of the 

intersecting fields, or of parts of them, may be seen as one-dimensional open or closed strings: 

 

Fig. 22. Unidimensional closed strings 

 

Fig. 20. Unidimensional open strings 
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Fig. 21. Unidimensional strings embedded in the dual quantum field model 

In string theory, mirror symmetry emerges from the notion of T-duality [27], that relates the 

spaces described by Type IIA and type IIB strings theories.  

In Type IIA string theory, the strings can move freely in the Calabi-Yau [28] space with a larger 

radius, while in type IIB string theory, the strings are confined to the boundaries of the transverse 

space of shorter radius.  

T-duality relates these two different types of larger and smaller transversal spaces by means of a 

type of inversion that exchanges the roles of the large and small radii transverse spaces. 

In the context of the dual fields model, the Calabi-Yau spaces of smaller or larger radius are 

considered equivalent to the transverse higher dimensional contracting or expanding subspaces, 

that are mapped to each other in a mirror symmetric way by means of their topological 

transformation through time, as described before in the antisymmetric system.  
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In the fields model, the transverse subspaces periodically change their role in the antisymmetric 

system becoming the negative reflection of each other at different times. This type of mirror 

symmetry at different times may be related to the SYZ conjecture [29], which states that there 

exists a special type of Calabi-Yau manifold called a mirror manifold that is related to another 

Calabi-Yau manifold by a T-duality transformation. 

The elliptic orbits inside of the transversal subfields, caused by their periodical expansion and 

contraction, can be visually related to the notion of elliptic fibrations used in String theories. 

They are represented in Figs. 23 and 24. 

Fig. 23 Elliptic fibrations in antisymmetric system 

 

 

Fig. 24. Elliptic fibrations in the symmetric system 

As well in the context of string theories, the intersecting fields that interact to form the nucleus of 

subfields may be related to the positive curvature of de Sitter vacuum spaces, when expand 

causing an outward pushing force, or to the negative curvature of anti de Sitter [30] vacuum 

spaces, when they contract causing an inward pushing force. 

The symmetric and antisymmetric systems may also be related to the Ramond-Ramond or the 

Kalb-Ramond fields. The Ramond-Ramond [31] fields are antisymmetric tensor fields with two 

spacetime indices, which is a mathematical way to refer to two fields in a dual system. 
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4.2 Many worlds interpretation 

Everett’s many worlds interpretation [32] of quantum mechanics proposes multiple worlds that 

coexist simultaneously.  

Everrett’s multiple worlds are independent of each other and do not interact, although there is 

also an interacting version of the Many Worlds interpretation by H. Wiseman [33].   

In the MWI, each world represents a possible state of a particle. In this sense – despite the 

differences – the “intersecting worlds” model introduced in this paper seems conceptually 

consistent with the idea of multiverses with different states, in the case of the antisymmetric 

system, or even with equal states in the case of the symmetric system.  

However, the parallel universes in the dual model are conceptualized in terms of the mirror 

reflection matter and antimatter existing in a nuclear manifold, instead of considering the states 

of matter or antimatter existing in independent and unrelated folds. 

The notion of multiverse is assumed in the present model.    

4.3 Wave pilot interpretation 

In 1952 David Bohm, based on de Broglie’s work, proposed the wave pilot interpretation of 

quantum mechanics. Previously, the idea that photons or electrons may be guided in some way 

by a pilot electromagnetic field or by a pilot wavefunction had been considered by Einstein and 

Born respectively. [34]  

The present model may be interpreted as a two-wave pilot theory, as the displacements of the 

photonic subfield in the symmetric system and the electron-positron subfield in the 

antisymmetric system are guided or piloted by the displacements of both intersecting fields while 

contracting or expanding with the same or opposite phases.  

The intersecting fields and subfields can be characterized as longitudinal waves.  

The “hidden variables” in the dual atomic model are related to the composite spatial structure 

given by the intersection. Being a local model, whatever action on the left or right side of the 

system will have immediate effect on the whole shared nucleus.  

Action at a distance will have the limit given by the intertwined topology of the dual system.     

4.4 Hidden sectors and Hidden valley models 

The hidden sector [35] or hidden valley is a hypothetical collection of quantum fields and their 

related particles that are not visible to us and are considered related to dark matter. 

In the context of the dual matter atom of six folds we introduce in this paper, a hidden sector will 

be the field or subfield that cannot be directly observed from inside of another field or subfield of 

the composite atomic manifold.  
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In that sense, an observer placed inside the left intersecting field or in the left transversal subfield 

will not be able to directly detect the right intersecting field nor its related transversal subfield. 

An observer placed in the vertical subfield with negative curvature will not directly detect the 

inverse vertical subfield with positive curvature.  

In the context of the mirror symmetric or antisymmetric dual system, the “visibility” or 

invisibility of the “dark” mass or energy will be relative to the position of the observer.  

 

4.5 Transactional interpretation 

The presented model can also be expressed in terms of emitter-absorber transactional models that 

correlate advanced and retarded waves. The opposite states of the nuclear subfields can be 

viewed as an interchange of energy that occurs through a transactional “handshaking” [36],  

 

Fig. 25. Transactional handshaking      
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4.6 Dirac and Weyl semimetals 

Weyl semimetals [37] are considered exotic phases of matter characterized by the presence of 

Weyl fermions, which are considered ½ spin quasiparticles with chiral handedness and no mass 

or charge. They were proposed by H. Weyl in 1929.   

In that context, it is frequent to represent the Weyl fermion [38] as the subcone formed by the 

intersection of two cones. 

This type of geometry is closely related to the topology of the dual atomic model introduced in 

this article. In the context of the dual atomic model, the subcone would the vertical subfield 

formed by the intersection of a contracting and an expanding field that vary with opposite phases 

forming an antisymmetric system. The vertical subfield is identified as an electron when it 

moves left toward the side of the intersecting field that contracts, or as a positron when it moves 

right a moment later.  

However, as the Weyl fermion does not have mass and has a fixed chirality that breaks the CP 

party that links matter and antimatter, it can also be related to the left or right transverse subfields 

that this model identifies as an expanding and almost massless neutrino or antineutrino.  

The CP parity of the handed neutrino is saved through time, as its mirror reflection counterpart 

will exist in a future or past time, so to speak, when the left transversal subfield expands at the 

left side of the system acting as a neutrino, the right transversal subfield will contract acting as a 

proton, and the vertical subfield will move towards the right acting as a positron. A moment 

later, when the left transversal subfield contracts becoming an antiproton, the right transversal 

subfield expands acting as an antineutrino, and the vertical subfield moves towards the left acting 

as an electron. 

In that sense, the massless transversal “Weyl fermion” would be related to the decay of the 

proton and antiproton, and to the arising of the electron or positron. 

H. Weyl formulated his hypothetical massless fermion in 1929. The massless neutrino was 

proposed by Pauli in 1930.    

4.7 Redox and acid-base reactions 

The dynamics of the dual nucleus, in regard to the antisymmetric system, can be conceptualized 

as a type of reduction-oxidation (redox) reaction, where the right-handed and left-handed sides of 

the system interchange roles as oxidizing and reducing agents:  
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• In matrix A2, the right-hand side acts as an oxidizing agent that gains a positron, 

becoming reduced, while the left-hand side acts as a reducing agent that loses an electron, 

becoming oxidized.  

• Conversely, in matrix A4, the right-handed side acts as a reducing agent that loses a 

positron, becoming oxidized, while the left-handed side acts as an oxidizing agent that 

gains an electron, becoming reduced.   

The interplay of the left- and right-handed sides of the antisymmetric system can be 

conceptualized as well as an acid-base reaction between the two sides. 

• In matrix A2, the left-handed side acts as an acid donor, transferring an antiproton to the 

right-handed side which acts as a base acceptor receiving a proton. 

• In contrast, in matrix A4, the left-handed side acts as a base acceptor, receiving an 

antiproton from the right-handed side, which acts as an acid proton donor. 

The reciprocal transfer of mass, energy, and charges between the two sides of the mirror 

antisymmetric system is a consequence of their different oscillatory phases.  

4.8 Riemann-Silberstein vector 

In the early 20th century, Ludwik Silberstein proposed a novel formulation of Maxwell’s 

equations in which the electromagnetic field is represented by a complex vector, known as the 

Riemann-Silberstein vector [39]: F = E + iB  

The electric field E constitutes the real part of the complex vector F, and the magnetic field B 

forms its imaginary part. This implies a 45-degree rotation of the magnetic field B and the 

introduction of a different time phase in the magnetic field.  

The dual atomic model discussed in this article suggests that the new time phase affects only half 

of the magnetic system at matrix A2 moment and, later, the other half at matrix A4. This 

nonlinear evolution would imply that the interaction between the electric and magnetic fields 

cannot be described by simply adding the electric and magnetic fields together.  

However, as was previously shown in Fig.16, it can be useful to represent the evolution of the 

symmetric (electric) and antisymmetric (magnetic) systems as simultaneously superimposed on 

the same complex space.  

In the context of the dual nucleus, the upward and downward displacements of the vertical 

subfield of matrix A1 and A3 cause the electric field, and the rightwards and leftwards 

displacements of the vertical subfield of matrix A2 and A3 are the source of the magnetic field. 
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By rotating the complex plane 90 degrees four times, the quantized electric and magnetic 

behavior of the system can be described by the sequence F = A1 + A2 + A3 + A4.  

A1 and A3 matrices can be interpreted as representing the electric source of the fields system, 

while matrices A2 and A3 represent its magnetic source.  

A2 represents the positive monopole, and A4 represents the negative monopole moments of the 

dipole formed by A2 + A4.    

The leftward and rightward displacements of the subfield that create the lateral pushing electric 

charge in the magnetic moments of A2 and A4 are caused by the introduction of a time phase 

shift in half of the system, making it antisymmetric. 

The symmetry is restored in the electric moments of A1 and A4 when the time phases 

synchronize. 

Fig. 26 visually relates the four eigenvector matrices with the diagrams of quantized EM waves 

symbolically represented in a sinusoidal way: 

 

Fig. 26. Representation of the Fermionic magnetic and bosonic electric moments 
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4.9 Deterministic theories: Causal set and Cellular automata .   

Several theories as the Causal set theory [40] formulated by Rafael Sorkin, or the Cellular 

automaton [41] interpretation of Quantum mechanics proposed by G. ‘t Hooft, look for a 

deterministic description of nature at the micro and macrocosmic level.  

However, how causal discreteness arise from a classical continuous space time remains to be 

fully elucidated. 

The geometry of the rotational dual atomic model may enrich those theories by providing a 

deterministic topological description for the smooth continuity hidden in the atomic discreteness, 

and for the discreteness that may be hidden in the continuity of space time when it forms a 

composite rotational manifold. 

As it has been previously seen, it’s the periodic 90-degree rotation of the whole complex plane 

what introduces a quantum discontinuity in the classical continuous evolution of the dual system, 

interpolating the antisymmetric and the symmetric moments of the system.  

That rotational emergence of the causal and smooth discreteness is graphically deduced from the 

evolution of the 2x2 complex rotational matrices of eigenvectors A1 to A4. 

4.10 Astrophysics 

Copernicus started to question the geocentric model because of its unexplained asymmetries, 

considering it "a monster" formed by unrelated members taken from different places. [42]  

However, his heliocentric model lost its circular symmetry when Kepler realized, based on the 

more precise measures given by the invented telescopes, that planetary orbits were elliptic.  

Although the Copernican simplicity remained, many unexplained asymmetries emerged: 

different planetary velocities, planetary motions that accelerate and decelerate, different orbital 

eccentricities, different inclinations, and even planets that rotate in opposite directions.  

Several explanations have been proposed ad hoc, for example for the inverse rotation of Venus, 

and although the asymmetries of solar systems can be mathematically predicted and described 

they are not explained by means of a unique mechanism.  

A single and invariant orbital field would not be enough to describe a composite manifold of 

intertwined spaces and subspaces varying with the same or opposite phases. 

A system of intersecting universes that fluctuate with the same or opposite phases would produce 

a periodical big bang in the concave side of the symmetric system followed by a big silence 
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when an inverse and dark (as directly undetected from the concave side) big bang occurs in the 

convex side. 

The detected discrepancy in the measures of the rate at which the universe expands, known as 

the "Hubble tension" [43], could be related to the different pushing forces that are caused by the 

negative and positive curvatures of intersecting universes that periodically fluctuate. 

In a rotational multiverse context, a new time phase will emerge in half of the system following a 

big bang, as one side continues to contract while the other side commences to expand.  

 

4.11 Biophysics 

The fields and subfields of the model can also be interpreted as fluctuating vortices. Some 

quantum theories, such as the Chern-Simons theory [44], consider vortices instead of fields.    

The article titled “The Chern-Simons current in systems of DNA-RNA transcriptions” [45], 

provides an interesting diagram of a loop space acting as a Hopf fibration [46] over a DNA 

molecule [47]. This diagram bears resemblance to the diagrams about the inner orbits or elliptic 

fibrations of the transversal subfields previously mentioned. 

On the other hand, it’s currently known that the rotation of the spindle axis plays a fundamental 

role during cell division and that abnormal spindle rotations [48] can result in genetic 

abnormalities. 

Considering a cell as a dual system, its inner rotational dynamics may present some similarities 

with the physics of the dual atomic model we have presented. Abnormal phase changes would 

affect the processes of cell division and differentiation, accelerating or decelerating their normal 

paths. 

  

5. MODEL INCONSISTENCIES  

This paper does not aim to provide a rigorous formulation of the dual atomic model it introduces. 

Its focus is to show the consistency and possibilities of a dual approach to the atomic nucleus. 

5.1 The rotation of the whole system, which seems necessary to quantize the classical continuous 

fields and subfields of the intersecting system, does not seem to be enough to transform per se 

the physical properties and phase times of the subfields, synchronizing and desynchronizing the 

phases of the system.  

Misinterpreting the physical meaning of the symbolic formalism given by the eigenvectors’ 

directions seems to be a possibility in this model.  

5.2 The model does not explain how the inner orbital motions of the transvers subfields are 

affected by the inner orbital motions of the intersecting fields when contracting or expanding.  
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The inward pushing forces of the contracting fields with their subsequent compression and 

orbital acceleration, and their outward pushing forces when expanding with their subsequent 

decompression and orbital deceleration, will affect the orbits of the transversal subfields, 

especially where their orthogonal convergence occurs forming a shared whirlpool or vortex. 

That vortex could induce an epicycle-like trajectory of the inner orbital motions within the 

transversal subfields, which would require further explanation. 

5.3 Theis paper does not discuss the cause of the periodical curvatures of the intersecting fields, 

although it relates the system to the Higgs mechanism in a gravitational way.  

To describe the periodical curvatures in terms of spatial density and friction in a thermodynamic 

way a source of generating pushing force is needed.   

6. RECAPITULATION AND FINAL REMARKS  

The introduced topological quantum fields model is based on two intersecting fields whose 

curvatures periodically fluctuate in either the same or opposite phases. Their intersection forms a 

shared nucleus of two transversal and two vertical subfields that represent the particles and 

antiparticles of the dual nucleus shared by the system. 

When the curvatures of the intersecting fields vary with opposite phases, the transversal subfields 

exhibit mirror symmetry at different times, as half of the system follows a delayed phase that 

implies the emergence of a purely imaginary time dimension; the vertical subfield will move left 

or right, towards the side of the intersecting fields that contracts, acting as its own antiparticle. 

When their phases synchronize, the transversal subfields become mirror symmetric at the same 

time and the vertical subfield will move upward or downward. 

The dynamics of both symmetric and antisymmetric systems exhibit a classical continuity, like 

longitudinal waves, even in the case the intersecting fields synchronize and desynchronize 

periodically. However, considering a periodic 90-degree rotation of the whole system, a discrete 

discontinuity is introduced in its classical continuous evolution, breaking and restoring 

periodically its inner reflection symmetry. 

That rotational discreteness can be deduced from a 2x2 complex rotational matrix of 

eigenvectors and their related matrices transformed by the operations of transposition, inversion, 

complex conjugation and reversion, related in a modular way to Sobolev interpolations and to 

Tomita-Takesaki theory. 

The commutation of the sign of two of the four eigenvectors indicates the ½ or the 1 (as ½ + ½) 

order of derivation or antiderivation, and therefore the spin related to the state and spatial 

displacement of the subfields in the – periodically interpolated – antisymmetric and symmetric 

moments of the rotationally supersymmetric system. 

The nuclear subfields can be interpreted as the subatomic particles of a dual nucleus formed by 

matter and mirror antimatter, describing the strong, weak and electromagnetic interactions. The 

90-degree rotational transformations introduce a smooth quantum discontinuity, enabling the 

description of the curved space-time in discrete terms.  
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Superposition, entanglement, and the Pauli exclusion principle are interpreted in terms of mirror 

reflection matter and antimatter. 

A supersymmetric non-probabilistic description of the whole rotational system requires the 

interpolation of the complex function that describes its bosonic symmetric states and the 

harmonic conjugate function that describes its fermionic antisymmetric states. The bosonic 

symmetric system acts as the electric moment of the rotational manifold, and the fermionic 

antisymmetric system acts as its harmonic magnetic moment.  

While this work does not provide a fully developed and rigorously formulated model, the author 

hopes that its visual geometric and heuristically conceptual approach will inspire future 

advancements in research on the fundamentals of quantum mechanics and the physics beyond 

the standard model. 

The author further suggests that the introduced dual fields model could provide valuable insights 

for further modeling advances in the dynamical behavior of abnormal cell division and 

differentiation, which has been his primary objective. 

 

 

This work is dedicated to the memory of Magdalena. 
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7. ADDITIONAL IMAGES  

 

 

Fig. 27. Frames of reference, antisymmetric system 
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Fig. 28 Symmetric system, (initial diagrams). 
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Fig. 29 Fourier transform. Fourier inverse 
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Fig. 30: Modular matrices. Interpolation 
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