CURVATURAS VARIANTES

  • Four-Variable Jacobian Conjecture in a Topological Quantum Model of Intersecting Fields

    This preprint introduces in a visual and conceptual way a model of two intersecting curved fields with a shared nucleus, whose quantized dynamics offer potential cases of the four-variable Jacobian conjecture and a nonlinear Hodge cycle. The model’s Kummer-type geometry suggests a unified framework where abstract mathematical developments like Tomita-Takesaki, Gorenstein, and Dolbeault theories can…


  • Geometric Visual Approach to the Mass Gap Problem in N=1 Supersymmetric Yang-Mills Theory 
    Geometric Visual Approach to the Mass Gap Problem in N=1 Supersymmetric Yang-Mills Theory 

    *An updated version (En 9, 2024) of this post is provided in this pdf file: . Abstract: This paper introduces a non-conventional model within the framework of N=1 supersymmetric Yang-Mills theory [1], providing a visual explanation for the mass gap problem and the topological transformations of the supersymmetric atomic nucleus. The model is a supersymmetric…


  • Mass gap problem visual understanding
    Mass gap problem visual understanding

    The «mass gap» is considered one of the «millennium problems» by the Clay institute»: https://www.claymath.org/millennium/yang-mills-the-maths-gap/ In quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. Mass gap – Wikipedia So, we have a subatomic particle at its low level of mass and energy, and that…


  • Hints for Two-time dimensional physics: 2-T, F-theory, and IIB superstring theories
    Hints for Two-time dimensional physics: 2-T,  F-theory, and IIB superstring theories

    Dear friends, I hope you’re well. I’m sharing this unfinished post as a work in progress that I’ll try to review and improve when I have more time. Looking for current atomic models that have already considered more than 1 time dimension, I found the Two times (2T) physics, a 4 spatial and 2 time…


  • A Conversation with Bard: Exploring New Mathematical Models for Physics and Their Mathematical Foundations

    The title of this post was suggested by the last version of Bard , the Google’s conversational Artificial Intelligence, who patiently and enthusiastically had a conversation with me about some of the topics I’ve developed on this blog. Thank you Google! Q. Hi Bard. Are bosons and fermions described by the complex Schrödinger equation and…


  • Conversations with AI about Lorentz Transformations and Special relativity

    Q. I want to know everything about Lorentz Transformations. A. Lorentz transformations are a set of equations that relate the space and time coordinates of two systems moving at a constant velocity relative to each other. They are important for the theory of special relativity, because they show how measurements of length, time, mass and energy…


  • Speaking about maths with Chat GPT 4

    Hi friends, how are you. I asked some questions to the new AI chatbot that Bing incorporates in Windows Edge, which is said to use the same AI as the already famous chat GPT. It was not my purpose to test it, but genuinely look to see if it could clarify some concepts. And I…


  • Matrices, functions and partial differential equations in the context of rotational atomic models.

    Let A1 be a 2×2 complex matrix. That is the way that mathematicians like to start their writings, letting a thing be something else. However, you must be warned that not only am I not one of them but also I have no idea about mathematics. If you still want to keep reading, I will…


  • On the inadequacy of linear partial differential equations to describe the evolution of composite topological systems that rotate.  
    On the inadequacy of linear partial differential equations to describe the evolution of composite topological systems that rotate.  

    A loss of information about the fermionic antisymmetric moment of the atomic system would occur in the Schrodinger complex partial differential equation, causing the misleading notion of two separate kind of nuclear spaces that only can be probabilistically described. The interpolation of partial complex conjugate derivatives would be necessary for a complete description of the…


  • The role of partial differential equations on the insufficient description of the atomic nucleus  
    The role of partial differential equations on the insufficient description of the atomic nucleus  

    By means of the derivatives of a 2×2 complex matrix, this post proposes that fermions and bosons would be the same topological spaces super symmetrically transformed through time, being fermions the +1/2 or -1/2 partial complex conjugate derivative of bosons and vice versa. Ordinary and complex conjugate equations of all variables could not operate independently…


  • Differential equations and complex matrices on the description of the supersymmetric atomic nucleus.
    Differential equations and complex matrices on the description of the supersymmetric atomic nucleus.

    Let four positive vectors arrange on two rows and two columns being the elements of a 2×2 hamiltonian complex matrix. Rotate the vectors 90 degrees to obtain their complex conjugate; rotate 90 degrees the complex conjugate matrix to invert all the initial signs; and rotate the negative matrix to obtain their negative complex conjugate. The…


  • Special relativity and quantum mechanics in Euclid’s fifth postulate proof

    By means of the groups of symmetry between the angles equal, larger, or shorter than 90 degrees that can be formed with a inclined line and with its mirror reflected counterpart while rotating them through different intervals, a proof about the Euclid’s fifth postulate is suggested. The complementarity between angles larger and shorter than 90…


  • Transactional Handshake of Nuclear Quantum States and the Meaning of Time Reverse in the Context of a Composite Atomic Model 
    Transactional Handshake of Nuclear Quantum States and the Meaning of Time Reverse in the Context of a Composite Atomic Model 

    Abstract: A composite topological atomic model of intersecting curved spaces and subspaces that vibrate with same or opposite phases would provide visual insight about the physical mechanism underlying the «handshake» transactions of the subatomic quantum states that occur in the strong and weak interactions between a retarded wave that evolves forward in time and its advanced…


  • Two-state Vector Formalism and Transactional Interpretation of Quantum Mechanics from a Common Sense Point of View.
    Two-state Vector Formalism and Transactional Interpretation of Quantum Mechanics from a Common Sense Point of View.

    Wikipedia wonderfully tells us that «the two-state vector formalism (TSVF) is a description of quantum mechanics in terms of a causal relation in which the present is caused by quantum states of the past and of the future taken in combination.» This is very interesting, isn’t it? Because any sensible person will agree that any effect only can be…


  • Composite extradimensional quantum supersymmetric system

    Have a wonderful day


  • Re-flexiones sobre física simétrica, antisimétrica y asimétrica

    Estimados amigos, lectoras y lectores del blog. Hola de nuevo. Nada causa más terror en el ser humano que lo asimétrico. Bien debe saberlo el señor Vladimir Putin, quien hace no mucho amenazaba a occidente con una respuesta «asimétrica, rápida y dura» si – promoviendo o llevando a cabo actos de enemistad (entiéndase revoluciones primaverales,…


  • Kummer surfaces and geometric phases in a dual atomic model of intersecting waves

    Dear friends, how are you? I changed the blog url coming back to the default wordpress.com direction. That implies Google is punishing the blog in the search results (as now there are in the internet some – not too much anyway – broken links). Sorry for the inconveniences. Today I’m pleased to introduce you the…


  • Mass gap in a topological vector system of two intersecting spaces and subspaces vibrating with same or opposite phases

      Hi friends. I hope you’re doing well. I watched this interesting conference of professor of theoretical physics David Gross about the Yang Mills theory and the «mass gap» Millennium problem and decided to write about it here:   Reading or hearing anything about quantum mechanics from professional physicists can be a tough task because…


  • Coherencia y decoherencia cuántica

      «De Broglie mostró detalladamente cómo el movimiento de una partícula, pasando sólo a través de una de las dos rendijas de una pantalla, podría estar influenciado por las ondas que se propagan a través de ambas rendijas. Y tan influenciado que la partícula no se dirige hacia donde las ondas se cancelan, sino que…


  • Anyons, Majorana fermions, and supersymmetric quarks in a topological quantum dual system

      «De Broglie showed in detail how the motion of a particle, passing through just one of two holes in screen, could be influenced by waves propagating through both holes. And so influenced that the particle does not go where the waves cancel out, but is attracted to where they cooperate. This idea seems to…


  • ‘Cuántica’, anyones multidimensionales y fermiones de Majorana

    Hola amigas y amigos, cómo están? Espero que sigan bien. Hace unas semanas estuve viendo algunos vídeos divulgativos en los que habla coloquialmente el profesor José Ignacio Latorre, que es un prestigioso catedrático de física teórica de la Universidad de Barcelona. También dirige algunos proyectos importantes sobre computación cuántica en varios países, y es director…


  • Galois Extensions, Lie Groups and the Algebraic and Geometrical Solvability of Fifth and Higher Polynomials

    A friend of the blog also interested on visual geometry asked me the other day about some books for visual representations of Riemann spaces, and Galois, and Lie groups. I do not know those books. They only things I found are remote analogical representations that are not geometrical figures although are something visual and I…


  • Extensiones de Galois y grupos de Lie en la resolución de ecuaciones de quinto y superior grado

    Ya saben ustedes que este blog es especulativo (por cierto el post de los anterior en español sobre números primos no lo he corregido, pero lo desarollé y aclaré más en la versión en inglés), está dedicado a pensar y explorar. (Lo digo para que tengan precaución quienes vengan buscando información para aprender sobre alguna…


  • Hidden Asymmetries in the Riemann Zeta Function to Refute the Riemann Hypothesis

    By means of interferences between prime functions this post shows how an asymmetry between complex conjugates non-trivial zeros inside of the critical strip appears in the Riemann Zeta Function when the prime harmonic functions have a different phase, which could challenge the Riemann Hypothesis while clarifying the relation between prime numbers and the Riemann non-trivial…


  • Riemann Zeta Function, Functions Interferences, and Prime Numbers Distribution

    Updated April 21 Interference and non-interference between prime functions explain the distribution of prime numbers. We also show some cyclic paths, and some similitudes to interpret in a different way the Riemann Zeta function and his known hypothesis about prime numbers. You can read or download an almost literal pdf version of this post here:…


  • Función Zeta de Riemann, Interferencia de funciones, y distribución de números primos

    (Actualizado el 20 de abril) He representado aquí el orden de los números primos entre los números 1 y 100. Distribuyendo los números naturales en dos columnas, una par y otra impar, podemos formar diferentes funciones con los distintos números primos, sumando cada uno de ellos dos veces (una en la columna par y otra…


  • Hidden Variables in the Bell Inequality Theorem? When non locality does not imply non causality

      SARS Coronavirus 2 update (March 27, 2020): —————————————————- You will know that Newton, during the Great Plague that hit London and forced to close the Trinity Colle of Cambridge, took advantage of his confinement to develop his theory of gravity and  infinitesimal calculus that would determine the whole development of physics until the XX…


  • El final del viejo paradigma monista del campo único, independiente, e invariante

    Queridas amigas y amigos, cómo están? Quería comenzar este primer post del nuevo año con una noticia que leí hace poco: la Compañía automovilística Porche ha diseñado en colaboración con Lucasfilm – ya saben, los de la saga de Star Wars – esta maravilla de vehículo volador. No es bonito? Lo llaman «Starship Star Wars…


  • ‘Fundamentos de matemáticas y física un siglo después de Hilbert’ siguiendo la reseña de Juan Carlos Baez

    El post de hoy va a ser largo. Recuerden, si llegaron aquí buscando información para estudiar, que este es un blog especulativo y que las ideas que pongo son heterodoxas. Si llegaron hast aquí buscando inspirarse y pensar por sí mismos o simplemente para entretenerse, sean ustedes bienvenid@s. Están ustedes en su casa. (Los banners…


  • La torre bosónica de Benidorm, supremacía cuántica, y carta abierta al profesor Raúl Rabadán

    Queridas amigas y amigos, cómo están? He visto las noticias del nuevo rascacielos que se ha construido en Benidorm, el llamado «Intempo», de 192 metros de altura, la mayor en un edificio residencial en España y una de las mayores de Europa (creo que en Asia nos llevan cierta ventaja a este y otros respectos).…


  • Gravitational Entanglements. Open email to Caltech Prof. Hiroshi Ooguri

    Hi friends. Almost a year later I´m here again. At the end of July 2019 I sent an email to a Caltech professor, Hiroshi Oguri, as I found some familiar to me images related to his works about gravitational entanglements and I thought he could understand what I talk about on this blog. Unfortunately he…


  • Relativistic Supersymmetric 6 Quarks Model

    *Note: The ads you will see on this blog are automatically set and own by WordPress; I complained about it because I don’t like to show ads, but this is a free blog and they put those advertisements to get some profit. To quite the ads I would purchase a WordPress premium acount. I’m currently…


  • Ideas for an Unconventional Atomic Model to CERN

    Today I started to read the book «Lost in Math. How Beauty Leads Physics Astray», by Sabine Hossenfelder. At some point of the beginning, she speaks about a conversation with the head of theoretical physics at CERN, the Conseil Européen pour la Reserche Nucléaire. (CERN operates the largest particle collider, the LHC, which is providing a…


  • «Why might the Pythagorean theorem exist?»

    Yesterday I answered a question in Quora about the Pythagorean theorem and I wanted to publish it as well on the blog. The question was: «Why might the Pythagorean theorem exist? Is it a purely an arbitrary relationship observed in nature?» My answer was: Hi Ari, I think this is a very interesting question. The…


  • Cranks of All Countries, Unite!


  • Galois Theory, Hodge Conjecture, and Riemann Hypothesis. Visual Geometric Investigations.

    (Before starting I will say that this post, as the whole blog, is speculative and heterodox. I wanted to say it for the case that someone arrives here looking for info to study these subjects. The purpose of this blog is to think and to inspire others, not to teach them. I propose you to…


  • Teoría de Galois, Conjetura de Hodge e Hipótesis de Riemann. Investigaciones geométricas.

    (Antes de empezar quiero aclarar que este post, como todo el blog, es especulativo y heterodoxo. Quería mencionarlo por si alguien llega hasta aquí en busca de información para estudiar. Este blog no es para aprender ni estudiar, es para investigar, pensar, y tal vez inspirar). Como sabrán, uno de los llamados problemas matemáticos del…


  • Grupos de Galois y orden de los números primos

    Es posible encontrar un orden lógico para determinados números primos que representando extensiones de Galois siguen un mismo grupo de simetría de Galois, teniendo además cada elemento correspondencia con su par antisimétrico. Así: (7+83), (11 + 79), (19 + 71), (23 + 67), (31 + 59), (43 + 47) = 90 Estos números primos serían…


  • Prime Numbers Distribution

    There’s a beautiful symmetry related to this distribution of prime numbers when ordering those between the first 100 numbers that converge at Y+ or Y+. Combining the prime numbers of Y + and Y – there is a continuitity forming which seems a ring related to the number 90: The addition of the initial 7…


  • Representación no algebraica de grupos complejos e hipercomplejos de Galois.

    r’iéa Hoy voy a explicar cómo entiendo yo los grupos de Galois de una manera que se pueda entender, es decir, sin álgebra. Este post es más bien especulativo y puede que diga alguna inexactitud, es para mí saber si lo que digo aquí es correcto porque los matemáticos no me han dado feedback sobre…


  • How to Build a Regular Heptagon with a Compass and a Straightedge

    The heptagon can be drawn but it is considered that it cannot be constructed with just a compas and a straightedge. I tried this construction by using as the lenght of the sides a combination of the rational and irrational symmetry, the segment from the point R1 to i2 (in green color). I linked to…


  • To Galois or not to Galois? That (between others) is the Question

    This is an heterodox approach to groups symmetries from a geometric – non algebraic – point of view. It states that it’s possible to create a quintic or higher degree mirror reflected counter-function that converges with its 5th or higher degree function building them as extensions of a same 4th degree function and starting them…


  • Solving Quintic and Higher Functions in Terms of Radicals by Means of their Mirror Symmetric Counter-Functions.

    I’ve edited this article to make it clearer, updating it with a part of the post titled «To Galois or not to Galois». Below, I kept the previous versions of the post. Have a good day. I’ve drawn a right handed 4th degree «function» starting from the zero point (at the center of the circumference)…


  • Ecuaciones quínticas y grupos de Galois

    A principios del Siglo 19, Evariste Galois, un joven Escorpio de 20 años, dejó escrito la noche antes de batirse en un duelo mortal que las ecuaciones representan algebraicamente grupos de simetría y que esta simetría se rompe viniendo a ser mucho más compleja con las de quinto y superior grado; es por ello que…


  • Why do we need to learn the Pythagorean theorem?

    En tiempos de locura, no hay nada más creativo que el sentido común ni nada más disruptivo que la razón. Someone asked in Quora why do we need to learn the Pythagorean theorem. This is what I anwsered there today: The Pythagorean theorem is a wonderful gateway, a surprisingly beautiful starting point, to our mathematical…


  • Es el fotón compuesto de de Broglie un modelo de átomo compuesto?

    Encontré el otro día un artículo de un profesor de California llamado Richard Gauthier en el que habla del modelo de «fotón compuesto». Mi primera reacción fue de completa sorpesa por no decir estupefación. Porque lo primero que dice en la introducción es que «ha habido un continuo interés en la posibilidad de un modelo…


  • Is the Gödel ‘s Incompleteness theorem applicable to multidimensional systems ruled by a dualistic logic?

    (Versión en español más abajo). Is the Gödel’s incompletness theorem applicable when it comes to multidimensional systems ruled by a dualistic logic? Think about two intersecting fields varying periodically with equal or opposite phases. We can agree that the expanded field F is false and the contracted field T is true. F is not false…


  • Aritmética para niñas y niños que piensan los por qués.

    En España, en tercero de primaria, cuando tienen unos 9 años, las niñas y niños que piensan a cerca de los por qués de las cosas y tienden a lo visual, lo artístico y lo concreto, comienzan a confirmar con horror en sus notas del colegio que ellas y ellos no entienden las matemáticas (las…


  • El Grial dualista de los cátaros.

    Es conocida la leyenda que relaciona a los cátaros con el Santo Grial. Antes de ser exterminados como herejes por los cruzados en las laderas de Montsegur, varios de ellos se habrían descolgado por el vertical acantilado de una de las alas del castillo llevándose consigo la santa reliquia que custodiaban y su secreto. El…


  • Einstein, Lovachevski, Joaquín de Fiore y el Santo Grial cátaro.

    En los últimos 10 años he enviado varios miles de correos a prácticamente todas la universidades de Física – y de algunas otras materias relacionadas – del mundo, desde las más prestigiosas (sin excepción) a las más desconocidas. La verdad es que he sido enormemente persistente porque los destinatarios, profesores todos ellos, casi nunca han…


  • Atomic and Solar System model. Intersecting longitudinal fields varying periodically.

    Atomic and Solar System model. Intersecting longitudinal fields varying periodically. (Pictures) Fermions. Opposite phase of variation. Not ruled by the Pauly exclusion principle: Moment 1 Moment 2 Bosons. Equal phase of variation. Ruled by the Pauli Exclusion Principle. Fermions: Bosons: Carbon «atom»:


  • Differential Geometry in the Pythagorean Theorem.

    Exploring heuristically the Pythagorean theorem by means of differential geometry it appears that when ‘a’ and ‘b’ are not equal there is no equivalence between the internal and external elements of the quadratic system. It seems the broken equivalence could be saved by combining the parabolic and hyperbolic geometries, or by using periodically variable or…


  • Geometría diferencial, parabólica, e hiperbólica en el Teorema de Pitágoras

    Cuando en el Teorema de Pitágoras a y b son iguales, el área a^+b^2 coincide (es equivalente pero no igual) con el área de c^2 porque los 8 lados racionales de a^2 y b^2 equivalen a las cuatro hipotenusas racionales (hay que contar las dos caras de cada hipotenusa) de c^2, y los cuatro lados…


  • El orden de los números primos

    ¿Cuál es la regla que rige el orden de los números primos? Hoy voy a explicar por qué, desde mi punto de vista, los números primos aparecen en el orden en que lo hacen. Por ejemplo, tenemos las parejas de primos (los llamados «gemelos») 5-7, 11-13, 17-19, y entonces viene un número primo sin pareja,…


  • When a Number N is Prime.

    In Spain we would say this is the «old woman’s account», but I think it explains visually what prime numbers are and why they follow the order they have. Numbers are not purely abstract entities, any quantity implies distribution and distribution implies a space and a center. Numbers represent symmetries related to a real and…


  • Los campos de gravedad se expanden y se contraen.

    La noción de espacio que se subyace en los modelos aceptados por la física es la de un universo único y estático en el que los objetos celestes se mueven por inercia y las múltiples asimetrías que se observan se entienden producidas por azar. Cuesta mucho tiempo y esfuerzo cambiar los paradigmas asumidos. Es como…


  • «Geometría e imaginación» de David Hilbert. Una lectura crítica.

    Un amable profesor de matemáticas ruso a quien envié por email unas figuras geométricas preguntándole su opinión me recomendó un libro de David Hilbert titulado en inglés «Geometry and the Imagination» («Geometría e imaginación»); el título original en alemán es «Anschauliche Geometrie» (Geometría descriptiva»). Por su puesto, no estás traducido al español, ¿para qué iba…


  • Curvaturas hiperbólicas y parabólicas en el círculo.

    La geometría hiperbólica es aquella que tiene (o está relacionada con) una curvatura cóncava, de signo negativo; La geometría parabólica es la que tiene (o está relacionada con) una curvatura convexa, de signo positivo. Pero ¿si cóncavo y convexo son dos perspectivas distintas – la de dentro y la de afuera – de una misma…


  • Euclidean and non-Euclidean Parallel lines on Lobachevsky’s Imaginary Geometry.

    Non-Euclidean or hyperbolic geometry started at the beginning of the XIX century when Russian mathematician Nicolai Lobachevsky demonstrated that the fifth Euclid’s postulate – the parallel postulate – was not applicable when it comes to curved lines and so that more than one parallel can be traced through a point external to another line. As…


  • Demostrando el quinto postulado de Euclides.

    Desde que Euclides escribió los «Elementos» varios siglos antes de Cristo, en el que recogió todos el conocimiento matemático de entonces, se ha venido discutiendo mucho a cerca del postulado quinto conocido hoy como el postulado de las paralelas. El postulado 5º afirma que: “Si una recta al incidir sobre dos rectas hace los ángulos…


  • Virtual and Mirror Convergences on the Demonstration of the Euclid’s Fifth Postulate.

    Summary: Working with two parallel lines, one of them virtually existent, it can be demonstrated the convergence of two non-parallel lines mentioned on the Euclid’s fifth postulate. Non-Euclidean geometries are not Euclidean because they do not follow the Euclid’s definition of parallels. The fifth postulate of the Euclid’s Elements states that “If a straight line…


  • On the Demonstration of Euclid’s Fifth Postulate.

    Several centuries before Christ, Euclid’s «Elements» stablished the fundaments of the known Geometry. Those fundaments remained unquestioned until the XIX century. It stablished 5 simple and self evident postulates, from which Euclid deduced and remonstrated logically all the Geometry. But fifth postulate created many difficulties to mathematicians through the History. Many of them thought, from…


  • On the meaning of Mathematical Incommensurability in Euclidean and Non-Euclidean Geometries.

      «It is possible, of course, to operate with figures mechanically, just as it is possible to speak like a parrot; but that hardly deserves the name of thought». (Gottlob Frege. «The Foundations of Arithmetic»). Think about how human beings could have started to measure linear lengths and areas. I guess to measure a linear length for…


  • Reinterpreting the Riemann’s Lecture «On the Hypotheses which lie at the Bases of Geometry».

    I am going to write some comments around the famous Bernard Riemann’s lecture «On the Hypotheses which lie at the Bases of Geometry».  As you may already know, it is considered one of the most important texts in the History of modern mathematics having had also a decisive influence in other different realms of knowledge, particularly in modern Physics. I…


  • Solving Quintic Equations with radicals from a geometrical point of view.

    (Note: I’ve removed my non-ads subscription in WordPress, which is a premium feature I had purchased for the blog until now; also I won’t renew the blog’s domain name. I wanted to clarify I won’t get any profit with the advertisements that can appear on this blog). I think quintic functions could by understood as a rotational fractal formed by…


  • Squaring the Circle in a Projective Way

    I think it could be possible to explain the area of the circumference in a simple and rational way by projecting the square on the radius through the Z diagonal until the point that touches the circle and adding an additional extension. In the picture above, the coloured spaces represent the area of the circumference.…


  • The Pythagorean Theorem in the Complex Plane.

    The square 1 that we build with the referential segment of length 1, is an abstraction: we do not measure the lines and points there inside of it; We convey that the space inside of the square 1 has the value 1, 1 square, and we are going to use it as reference for measuring…


  • The Role of Irrationality in the Planck Constant.

    I think light does not travel at any speed, the photon is periodically formed by the periodical convergence of waves that are related to different kind of symmetries. I consider the point of the periodical convergence is the particle aspect of light. If the Planck constant describes the particle aspect of light, it will be…


  • On the Representation of the Riemann Z Function Zeros in an R2 Space and their relation to Irrationality.

    Abstract: Projecting the square 1 through the diagonal of its hypotenuse we can build a new prime square 1 with an irrational symmetry. Combining the rational and irrational symmetries we can get new prime squares which roots will be irrational. The zero points displaced in this way through the infinite diagonal should be coincident with…


  • The irrational Number 1

    I think it could be told that there is a rational number and an irrational number . For drawing the picture above I followed the next steps: 1. Draw a circumference with a radius 1 (or ) 2. Draw its exterior square. Each of its sides represent the 3. Draw another circumference outside of the…


  • The Hidden Rationality of the Pythagorean Theorem, the Square Root of 2, and the Pi number.

    We construct the square areas of the legs and in the Pythagorean theorem placed on and related to the specific spatial coordinates and . When the value of the leg  is 1 , the square area constructed is our primary square area 1. To say that the space that exists inside of a square area with…


  • «Solar Winds» and «Shock Waves». Is not Gravity a Force of Pressure?

    This artistic picture was published by NASA. It represents the interaction between the «solar winds» and the Pluto’s atmosphere. (Credits: NASA/APL/SwRI) Looking at that picture, I think it seems reasonable to deduce that the solar winds create a force of pressure on the Pluto’s atmosphere which resists to be pass through. This interaction between a…


  • Aleph and Irrationality

    I want to share some ideas that I’ve had related to the lost geometrical meaning of old alphabets. Aleph is the first letter of the Hebrew alphabet. It exists too in other alphabets as the Arabic, Phoenician and Syriac. I’m getting those data from Wikipedia. Aleph, or Alpha, represents the number one, and as it…


  • On the demonstration and refutation of Fermat’s last theorem and the Pythagorean’s one

    I consider Fermat’s last theorem is true to the same extent that the Pythagoras’s theorem is false. But it could be said too they both are wrong, or even that Fermat’s Last theorem is at the same time right and wrong depending on the perspective of the observer. When we create a square area we…


  • On the Refutation of the Pythagorean Theorem

    When we draw a square we make it on the base of 2 specific spatial coordinates (XY). We can delete our draw and create another independent square of the same dimensions based upon any other 2 spatial coordinates. In both cases, our referential coordinates will be the same, X and Y. We can change the…


  • Ciencia e irracionalidad

    Desde antiguo el ser humano ha tratado de situarse en el mundo, ordenarlo, comprenderlo y manipularlo, contándolo, pesándolo y midiéndolo. Todavía hoy muchos piensan que pesar, medir y contar es conocer. Cuanto más pequeños sean sus fragmentos, con más exactitud podrá ser examinada y conocida la cosa que conforman. La idea misma de justicia y…


  • Irrational Numbers Are Not So «Irrational»

    Drawing a diagonal in our referential coordinates X and Y we should ask ourselves if we are expanding the referential space or we are contracting it. Was it contracted or expanded previously? We modify the referential space, transforming it, folding or unfolding it, each time we displace our spatial coordinates without displacing in the same…


  • Noncommutative Geometry on 147

    Likely the first mesures were made with a simple step. The primary reference for next mesures should be the length of a unique step. As we created a first and unique reference for measuring straight lines – we can name it «1 step» – we invented the idea of length for organizing our world and…


  • Tell All the Truth but Tell it Slant

    «Tell all the Truth but tell it slant – Success in Circuit lies Too bright for our infirm Delight The Truth’s superb surprise. As Lightning to the Children eased With explanation Kind The Truth must dazzle gradually Or every man be blind.» Yo will know this poem of Emily Dickinson. I find it very interesting,…


  • The original «Auld Lang Syne» Song

    This blog is devoted to the comprehension of the physical mechanisms that explain the anomalous cell division and differentiation. In the beginning of this new year 2015 I am going to make an exception for celebrating the new year with you. As English Second Language learner, this past New Year’s eve I tried to understand the…


  • Our Tilted Universe

    The thesis presented on this blog is that gravitational fields vary periodically, they expand and contract, with the same or opposite phases. Two intersected gravitational fields varying periodically create in their mutual intersection four new fields which vary periodically too. I consider that our known universe is one of the fields created by and in the…


  • About Many Interacting Worlds (MIW) Theory

    The authors of the article «Quantum Phenomena Modeled by Interactions between Many Classical Worlds» published on Physical Review X, have presented a rational model of (at least) two parallel universes that interact between them. With a simple model of their theory they could calculate quantum ground states and to reproduce the double-slit interference phenomenon. «probabilities…


  • CPT Violations

    Consider two intersecting (or overlapping) concave fields A and B that vary periodically, expanding and contracting, with equal or opposite phases. When A and B vary with opposite phases their different rhythms of variation can be considered two different temporal dimensions, T1 and T2. I assign T1 to A, placed in the left side of…


  • Six Quarks Atomic Model

    (At least) two intersecting gravitational fields that vary periodically with equal (Figure A) or opposite (Figure B) phases create in their mutual intersection four new fields that are the subatomic particles of the central atomic nucleus. Following the Pauli exclusion principle, the subatomic particles of figure A will be fermions that obey the exclusion principle.…


  • Prime and Irrational Numbers

    Summary: I think there are conceptual similarities in the genesis of prime and irrational numbers that should be recalled for clarifying the meaning and functions of prime numbers, looking for the laws of their regularities and their appearance in the physical nature. I think that there is also a similarity between prime numbers and subatomic…


  • Prime Numbers Distribution

    I have reviewed this post with the next one about Prime and Irrational Numbers I did not delete this post because I think it’s good to show that making mistakes is a part of the though process. Ideas come gradually and they need to be reviewed constantly. Etymologically “Prime” comes from the Latin “Primus” which…


  • Complex Prime Numbers and the Riemann Hypothesis

    Summarize: I consider that composite odd numbers formed by the multiplication of a prime number by itself n times, by example 9, 27, 81, etc (for the prime number 3), are imaginary prime numbers that reflect the real prime number 3; but the imaginary plane that reflects the real is interdimensional, by example a spiral…


  • On the Refutation of the Riemann Hypothesis

    I have reviewed all this post on the next one: On the Prime Antinumbers at 7 September 2014. Thanks for reading. Some mathematicians have tried an approach to the Riemann Hypothesis by means of the spectral theory. This is the case of the Hilbert-Pólya conjecture. It is possible to question if there is a physical…


  • Mass Gap Problem and Hodge Conjecture

    Summarize: It is well known that neutrinos have mass. But quantum field theories cannot demonstrate mathematically they have a mass bigger than zero. I think it could be demonstrated that neutrinos have positive mass working with a non conventional atomic model of two entangled – I use the term “entanglement” in the sense of physical…


  • Mass Gap Problem Solution

    M = D x V M = Mass D = Density V = Volume N = Neutron Ve+ = Anti neutrino P = Proton Ve- = Neutrino MN = (VN) (-a x -b x +c) MVe+ = (VVe+) / (-d x -e x +f) MP= (VP) (a x b x -c) MVe- = (VVe-) /…


  • Recap. The Next Copernican Revolution

    I’m going to summarize in this post, in a general and disordered way, the ideas that I have written on this blog until now. I consider that all are aplicable at atomic and astrophysical level: – Gravity is a force, but it’s not a force of attraction, it’s a force of pressure. – There is…


  • Física para gente de letras. (I)

    Física para gente de Letras. Parte I. Me gustaría hacer un resumen de lo que llevo escrito en este blog, pensando sobre todo en las personas que se consideran así mismas “de letras” y que nunca han entendido nada sobre “ciencias”. He de advertir a los demás lectores que la ciencia no va a salir…


  • Antimatter in the Periodic Table of Elements

    I consider that gravitational fields vary periodically, they expand and contract. They are fields of pressure. I think that the Hydrogen atom represents the curvature of a gravitational field when it is expanded. The curvature has its lowest tension and it creates the lowest pressure on matter. The Helium atom represents the gravitational curvature  from…


  • Hydrogen and Helium Gravitons and Higgs Bosons

    Aristotle’s cosmovision prevailed during fifteen centuries as the unique and very true explanation of reality between most western people. But all the prestigious of his world vision disappeared with the European scientific revolution, in the European Renaissance. As you very well know, Copernicus and Galileo proved that it was the Sun and not the Earth…


  • Quantum Physics and Cancer Research

    Current atomic physicists, chemists, biochemists, biologists, physiologists, electrical engineers, etc, work with a model that asume electrons are subatomic particles that do not have a known relation with the gravitational fields we exist inside. Today, our science do not know the relation between gravity and electromagnetism, and at atomic level it is currently believed that…


  • Ciencia , Revolución y Sociedad

    El pasado verano envié más de mil correos a profesores, doctores y catedráticos de física de distintas universidades del mundo. Trataba de explicarles las ideas que había desarrollado sobre física atómica y astrofísica durante casi 6 años de mucho pensar apasionadamente, con mucho esfuerzo. Dado que yo no soy físico, hice la carrera de Derecho…


  • ¿Qué es la energía y para qué la necesitamos?

    Desde que los seres humanos descubrimos cómo obtener luz y calor del fuego, allá en la época de las cavernas, la búsqueda de nuevos y más efectivos combustibles ha sido constante en nuestra historia. La máquina de vapor permitió además obtener del fuego una fuerza mecánica. El motor de explosión que aún hoy usamos mayoritariamente…


  • What Gravitational Waves Are

    We think that our Universe is a gravitational field that expands and contract periodically. It is entangled to (intersected with) at least another universe. For us the known as «Big Bang» is the consequence of the simultaneous contraction of two entangled universes (or the contraction of one of them and the expansion of the other…


  • Subatomic Particles as Imaginary Numbers Update

    In this post there is not any new idea, I have only tried to put clearly the pictures of the previous post, although probably here there are some formal mistakes too. I think that because we are working with nonconmutative dimensions that are real and imaginary at the same time, this ideas could be placed…


  • Subatomic Particles Are Imaginary Numbers

    We think it is possible to unify quantum mechanics, relativity, and gravity, with a model of (at least) two entangled gravitational fields that vary – expand and contract – periodically with different or opposite phases, and 4 imaginary numbers that exist simultaneously in 4 mirror reflected – inverted – dimensions created by the gravitational intersection.…


Galois Extensions, Lie Groups and the Algebraic and Geometrical Solvability of Fifth and Higher Polynomials

A friend of the blog also interested on visual geometry asked me the other day about some books for visual representations of Riemann spaces, and Galois, and Lie groups.

I do not know those books. They only things I found are remote analogical representations that are not geometrical figures although are something visual and I do not understand them. But that remembered me I developed some diagrams about Galois groups by using rational and irrational symmetries several years ago, and I think I related them to Hodge cycles.

Retaking those ideas, but using rational symmetries only, I’m going to try now another approach by using the extensions of Galois fields and the continuous symmetries of the Lie groups to explain from a geometrical point of view why the fifth and higher degree polynomials cannot be solved by radicals (the basic operations of addition, subtraction, multiplication, division and root squares) as Abel and Galois works demonstrated with their works.

– – – – – – – – – – – – –

Some interesting terminologies:

https://en.wikipedia.org/wiki/Galois_groupIn mathematics, more specifically in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them

https://en.wikipedia.org/wiki/Lie_group : «A Lie group is a group whose elements are organized continuously and smoothly, as opposed to discrete groups, where the elements are separated—this makes Lie groups differentiable manifolds. Lie groups are named after Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.»

https://en.wikipedia.org/wiki/Algebraic_function_field : In mathematics, an algebraic function field (often abbreviated as function field) of n variables over the field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K=k(x1,…,xn) of rational functions in n variables over k.»

https://en.wikipedia.org/wiki/Permutation_group «The popular puzzle Rubik’s has been used as an illustration of permutation groups. Each rotation of a layer of the cube results in a permutation of the surface colors and is a member of the group. The permutation group of the cube is called the Rubik’s cube group.»

https://en.wikipedia.org/wiki/Isometry : Isometry

– – – – – – – – – – – – –

For this different approach we only need to create what I think would be a flat Riemann isometric space, by dividing the XY Z spatial coordinates in equal intervals.

On that space we trace a first curve from the point zero to the point 1. And then we perform the inverse operation tracing the conjugate curve from 1 to 0. That lets create a first field {01, 10} that is going to determine the symmetry of the successive larger extensions we are going to create from it.

So, we can project the initial curve from 01 to 2, and from them we perform the inverse operation. But to preserve the symmetry of this permuted (rotated from X to Z) extension we also need to project in a rotational way, by permuting it, the initial inverse curve, mapping it from 10 to 1’0. So the permuted extension will be {012, 21’0}.

In the same way, we can build a new extension of a higher permutational degree mapping 012 to 0123 and 21’0 to 2’1»0, to get the rotated field {0123, 32’1»0}

And we build another larger extension of a higher permutational degree mapping 0123 to 01234 and 32’1»0 to 3’2»1»’0, to get the rotated field {01234, 43’2»1»’0}.

When arriving to the point 5 projecting 01234 to 012345, if we trace its inverse curve we will need to pass through 54’3»2»1»»0. But the point 1»» is missing because it’s coincident with the +1 of the initial field. If these functions were a polynomial of forth degree, the replacement of the forth exponential 1»» by 1 would not have arithmetic consequences because the value of 1 would not change.

But when it comes to the next extension 0123456, the inverse curve finds this same limitation at the missing inverse point 2»». So, instead of creating the field {0123456. 65’4»3»’2»»1»»’} we need to create the field {0123456, 65’4»3»’21’}. The symmetry of the group of previous sub-extensions, the Galois group, and the smooth continuity of the group will be saved from this geometrical point of view by replacing 2»» by 2 and 1»»’ by 1′. But when it comes to algebraic polynomials, we cannot replace the forth exponential 2 by a 1 exponential 2 without creating arithmetical consequences that are going to affect to the solvability of the polynomial.

The difference between the preserved geometrical symmetry and the broken algebraic symmetry would be explain by considering that the geometric symmetry is only apparent because we are going with flat curved functions on a flat plane. But if we thought about the diagrams as increasingly orthogonal structures, we would appreciate that the symmetry of the extension and the possibility of keeping creating larger and higher degree extensions in a smooth or continuous way, also gets broken. Because when we arrive to the point 3»’ we can jump to the point 2, we only could use the point 2»» which should exist in a higher orthogonal level. Or could the exponentially inverse negative 2»» point be considered equal to the positive 2? The inverse 2»» would mean that the base 2 is negative and the decreasing or inverse 4th exponential is also negative.

So, we maybe could represent the above diagrams as rising structures, in the sense that each + rotational permutation rises a higher floor, while each inverse rotational permutation goes down one floor. In that sense, it would be clear that the continuity of the increasing extensions would get broken beyond the 5th floor, or in algebraic terms, beyond the forth polynomial. In that sense, those figures could be compared by analogy to a spiral tower that has a unique up staircase, leading up to each floor, but each floor would have each own down staircase. In that way, if we were in the 5th floor at the point 6 and we went down through its down 5th staircase, when we arrived to the floor 3’’’ we would find that stair finishes at that point 3’’’, and that there’s no available stair to keep going down to the next down floor 2’’’. From there, we could not use the the stair 2 of the floor 2 because it would not be accesible when coming from the down path of the floor 5.

But you can see that while we are build the figure, we are creating an inverted curve or descending scale for each ascending curve or scale in each floor. When it comes to the first curve, we create its inverted or conjugate curve when we go again towards zero; and when we are in the second floor (at the point 2) we create the inverted descending scale when we trace the curve from 2 towards 1′.

In that sense, we we come down from the floor 6 through 5′, 4», 3»’, and we expect to find a 2»» but we find a 2, that number 2 is the point of intersection between the ascending scale 12 and descending scale 2’1. We could not expect to use the 2»» but it seems reasonable to think, as the symmetry is respected, to use the descending scale 21′ that would be equivalent to 2»»1′. The problem is that as we are counting the degrees of the descending scale in an inverted way, from 6 0 0 instead of from 0 to 6, when it comes to 2»» or 2(4th) we are considering the 4th degree with respect to 6, not with respect to 1.

Interestingly, we can sew, follow each straight coordinate, how the degrees are decreasing starting from 0

Taking the Y+ coordinate, we see how the points are 1»’, 3», 5′, 7.
Taking the Z+ coordinate, the points are 2»’, 4», 6′, 8
Taking the X+ coordinate, we get the the first discordance as it starts by 1: 1, 3»’, 5», 7′, 9
Taking the Z+- coordinate, we get the second discordance as it starts by 2: 2, 4»’,6», 8′, 10
Taking the Y- coordinate, we get 3, 5»’, 7», 9′, 11

We can also observe another kind of groups that can be formed keeping the symmetry but following different paths.

Look at the field with the pink borders, from the corner 5»’ we can follow a linear path of permutations with the same 3th degree 4»’, 3»’, 2»’, 1»’. And in an inverse sense, we can create a mirror symmetric function that will form a symmetric field, following the path 5»’, 4, 3′, 2», 1»’.

We can try to create the same kind of figure with larger numbers that will have lower degrees. So for example, starting from the 2th degree 6: 6», 5», 4», 3», 2», 1». And inversely: 6», 5»’, 4, 3′, 2», 1»’. You can see here how the overlapping changes the expected symmetry of the larger field, (it’s not going to respect the same symmetry at the starting points from 0 to 1 and from 1 to 2), and that overlapping creates a sub-extension (we could represent it with curves ads well) that is an extension of two 1/2 parts of two different 1 initial fields.

But in any case, the only change between the figures of functions f5 and f6 is the change of the slope of 3’2» and 2»3» in function f6 because the slope becomes zero at that point. So there is a transformation of the curvature that becomes zero creating the appearance of an heptagon in the f6 fields that should be, as the f5 field an octagon.

What causes the overlapping there is that both sides of the function f6 share the same 01 and 12»intervals that would exist in a straight way on the Z-+ coordinate, which is a coordinate we did not use, so do not have categorized the degree of the permutation of that 01 interval on Z=+ coordinate.

If we compare the points of f5, f6, f7 and f8, we can see these decreasing grades formed with one side of each function:
f5(1»’) f6(1») f7(1′) f8(1)
f5(2»’) f6(2») f7(2′) f8(2)
f5(3»’) f6(3») f7(3′) f8(3)
f5(4»’) f6(4») f7(4′) f8(4)
f5(5»’) f6(5») f7(5′) f8(5)

And a linear grade with the inverse part of each function:

f5(1»’) f6(1»’) f7(1»’) f8(1»’)
f5(2») f6(2») f7(2») f8(2»)
f5(3′) f6(3′) f7(3′) f8(3′)
f5(4) f6(4) f7(4) f8(4)

And then, we start again with the 3th degree:

f5(5»’) f6(5»’) f7(5»’) f8(5»’)
f5(6») f6(6») f7(6») f8(6»)
f5(7′) f6(7′) f7(7′) f8(7′)
f5(8) f6(8) f7(8) f8(8)

What we are doing with analysing these possible symmetries, the structure of the created fields and the groups they form, their continuities and discontinuities, is actually a mathematical analysis, but from a purely geometrical point of view, which seems is something that has been forgotten due to the exclusively abstract algebraic approach of modern mathematics.

[So. I found no book about differential geometry, Galois or Lie theories, etc, using similar kind or whatever geometric figures to explain groups and symmetries. To me it would be the most natural point of view. Differential calculus could be explained in this kind of context as well instead of showing us the concepts of tangent, slopes, increments or decrements in a way that does not have a meaningful geometrical context although the spatial coordinates are used in what is named «a geometrical interpretation», as something helpful for visual people but that nobody actually understands. If they understood what they are doing, they would have developed geometrical explanations.

This is the main cause that explain why so many people who need spatial and visual references but also meaningful and deep understandings about what’s going on – those who
instinctively will reject to memorize definitions or formulas they do not understand – are getting outside of the scientific realm because they are failing with symbolic algebra.]

However, it’s not clear enough to me yet the exact correspondence between the geometric approach through fields and the algebraic arithmetic that solves the polynomials, between the rotational permutations and their inverse operation and the exponentiation or multiplications and its inverse roots or negative divisions. It’s not clear enough how that relation between the algebraic equations and the material fields exactly works. So I still have to research a bit more about that.

But looking for information I’ve felt interested on the Felix Klein work about his «Erlangen» program, which tries to classify – as an entomologist of geometric curves – geometry through the study of group theory and projective geometry. It’s surprising, taking a look at some Klein works that he drew geometric figures when explaining his ideas, something that seems to be – as projective geometry itself – totally forgotten by the exclusive use of algebraic operationalism.

In this sense I’d like to read some of the Felix Klein and Sophus Lie works. I’m a new fan of Lie and Klein.

And to start with this matter, I’m going to try to read «The Genesis of the Abstract Group Concept» by Hans Wussing, and «Geometries, Groups and Algebras in the Nineteenth Century – A History» by Isaak Moiseevich Yaglom (this last title is a new edition of the same book titled «Felix Klein and Sophus Lie, evolution of the idea of symmetry in the nineteenth century» by I. M. Yaglom).

Also, I found this very interesting article «Geometric approaches to quadratic equations«: https://www.maa.org/sites/default/files/images/upload_library/46/NCTM/Geometric-Approaches-to-Quadratic-Equations.pdf

I’d like to comment it in another post. But I see that they are speaking about «Geometrical algebra» to refer to that geometry that servers to visually illustrate algebraic equations, like if they had converted geometry as a little and curious appendix of the true mathematics that are the algebraic symbols, to help people that need visual references, which I think is a monstrosity.

But I think this article can be very useful for us, reading it in a critical way and completing the parts that I think are obscure, for example, why and how multiplying a segment of length 6 and a segment of length 4 gives us a square of area 24. Or how and why we can calculate the root square of a segment (instead of using root squares only for square areas). Those steps are not explained and are crucial for people who need to rationally and logically understand what’s going on (not only to have visual references), to be able to understand everything else, and not to get stuck in the first beginning.

I think this little article can be a kind of Rosetta Stone for me to understand from a numerical and algebraic point of view the mentioned polynomials, and so to be able to clearly relate the above figures (that are curved – or hyperbolic – geometries) to the algebraic polynomials and the numerical operations.

It’s really surprising to me that the article mentions that when it comes to «geometrical algebra» there are no negative numbers and there are not zeroes. Only with that phrase you can imagine the state of the situation, and clearly shows that mathematicians are not using these natural geometries – we see those symmetries in the structure of flowers, for example – to understand symmetries because they got totally lost in their algebraic abstract symbols. Of course in geometry and so in «geometrical algebra» negative numbers and zeroes can be represented. A curved function that is conjugate of another curved function will be negative of the positive one and their intersecting points at the beginning or at the end, will be zeros.

But before finishing, surprise surprise:

In the above mentioned Yaglom’s book I found these figures that you will recognize because are almost the same I’m working with in this blog when it comes to groups.

When Sophus Lie and Felix Klein developed their theory about continuous groups transformations did not work with abstract symbolic algebra without spatial references, (sorry for the bad news for convinced and recalcitrant algebraists). Quite the contrary, they got their ideas from and worked with visual figures and projective geometry.

It’s pretty obvious to me that when it comes to groups, subgroups, continuities, discontinuities, combinations, permutations, Galois groups, Riemann manifolds, Lie and klein groups, or Hodge cycles, the natural and simplest figures to work with are in a flat plane are the ones I’m using in the blog for those issues. Those figures are very well known, and it seems they were also used in some extent by the fathers of the groups theory. So, why the hell are not being currently used to research and to teach about groups and symmetries? And even more, why the bloody hell no one did recognize them when I sent them? The answer is simple: because operationalist algebraists have taking over mathematics since the last century trying to definitely kill geometry, and they are learning, teaching and developing things they do not completely understand. Not for much longer, maybe.

Erlangen program by Felix Klein: «A comparative Review of Recent Researches in Geometry»: https://arxiv.org/pdf/0807.3161.pdf

It will be very interesting to find out more Klein and Lie geometric figures.

Have a nice week.

Escribe tu comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.